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We dedicate this book to Michael E. Soulé, who died while we were working on this edition (Crooks et al.
2020). Michael was instrumental in the founding of the field of conservation biology by inspiring his basic
science friends to apply their efforts to conserve biodiversity and by organizing a series of meetings in the
late 1970s. He also co-authored the first book that applied the principles of genetics to conservation
(Frankel & Soulé 1981).
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Preface to the Third Edition

I have always loved, and will always love, wild nature: Plants and animals. Places that are still intact.
Though others might avoid the word, I insist that we talk about “love” in conservation, because
we only protect what we love. (Michael E. Soulé 2018)

The field of conservation genetics has changed dra-
matically since the second edition of this book was
published in 2013. One-third of the references in this
edition were written after the publication of the sec-
ond edition. We have changed the title to reflect the
growing and profound influence that genomics has
had on applying genetics to problems in conserva-
tion. We have witnessed an extraordinary explosion
of knowledge of the genetics and genomics of nat-
ural populations because genomic approaches have
becomemore affordable and accessible. It has been a
real challenge to add the new literature while keep-
ing the book to a reasonable size. To accomplish
this, we have put the Appendix and the References
online. We understand that this is inconvenient, but
we wanted to avoid an unwieldy book. Approxi-
mately 10% of the second edition was taken up by
the References. The References and Appendix can
be downloaded from the following companionweb-
site: www.oup.com/companion/AllendorfCGP3e.

We are excited to add Margaret Byrne and Chris
Funk as coauthors. The five of us met in Missoula
in July 2019 to plan our efforts (see Figure P.1). We
have addedChapter 24, which deals with the practi-
cal considerations of being a conservation geneticist
and applying genetics to problems in conserva-
tion. We invited Helen R. Taylor to help write this
chapter; she is the primary author of Chapter 24.

This editionwaswritten largely in themidst of the
COVID-19 pandemic.Millions of peopleworldwide

have died from this tragic event. We send our deep-
est condolences to those who have lost loved ones
from this global pandemic. The disease spillover
from wildlife to humans is intimately linked to
the topic of this book: conservation of biodiversity.
This tragedy demonstrates that human health and
well-being are inextricably tied to the health and
well-being of the natural world. We hope this book
furthers biodiversity conservation for the benefit of
nature and humans.

Our guiding principle in writing has been to pro-
vide the conceptual basis for understanding the
genetics of biological problems in conservation. We
have not attempted to review the extensive and
ever-growing literature in this area. Rather, we have
tried to explain the underlying concepts and to
provide examples and key citations for further con-
sideration. We also have strived to provide enough
background so that students can read and under-
stand the primary literature.

There is a wide variety of computer programs
available to analyze genetic and genomic data to
estimate parameters of interest. However, the ease
of collecting and analyzing data has led to an
unfortunate and potentially dangerous reduction
in the emphasis on understanding theory in the
training of population and conservation geneticists.
Understanding theory remains crucial for correctly
interpreting outputs from computer programs and
statistical analyses. For example, the most powerful

xxi
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Figure P.1 The authors (left to right: Chris Funk, Margaret Byrne, Sally Aitken, Fred Allendorf, and Gordon Luikart) on the campus of the
University of Montana.

software programs that estimate important param-
eters, such as effective population size (Chapter 7)
and gametic disequilibrium (Chapter 10), can be
misleading if their assumptions and limitations are
not understood.We are still disturbedwhenwe read
statements in the literature that the loci studied are
not linked because they are not in linkage (gametic)
disequilibrium.

We have striven for a balance of theory, empirical
examples, and statistical analysis (see Figure P.2).
Population genomics provides unprecedentedpow-
er to understand genetic variation in natural pop-
ulations. Nevertheless, application of this informa-
tion requires sound understanding of population
genetics theory. To quote Joe Felsenstein: “We have
the same situation in population genomics. Peo-
ple have vast amounts of data and do completely
half-ass things with it because they don’t know any
better. And, I wish there was some way of persuad-
ing people that we need to train students in the
development and properties of the methods. And
that means population genetics.”

The molecular tools being used by population
geneticists continue to change rapidly. It has been
difficult to decide which techniques to include in
Chapters 3 and 4. We present some techniques

that are seldom or no longer used (e.g., allozymes)
because they are crucial for understanding much of
the previous conservation genetics literature.

We also have included a comprehensive Glos-
sary. Words included in the Glossary are bolded
the first time they are used in each chapter. Many
of the disagreements and long-standing controver-
sies in population and conservation genetics result

Empirical population
genetics

Th
eo

ry

D
at

a

A
nalysis

Figure P.2 The application of population genetics to understand
genetic variation in natural populations relies upon a combination of
understanding theory, collecting data, and understanding analysis.
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from people using the same words to mean differ-
ent things. It is important to define and use words
precisely.

Many of our colleagues have written Guest Boxes
that present their own work in conservation genet-
ics. Each chapter contains a Guest Box that pro-
vides further consideration of the topics from that
chapter. These boxes provide the reader with broad-
er voices in conservation genetics from some of the
major contributors to the literature in conservation
genetics from around the world.

We have lost some special colleagues since the
publication of the second edition. We have dedicat-
ed this edition to Michel Soulé, who co-authored

a Guest Box in the first two editions of this book.
We were saddened to learn that Elaina Tuttle, who
wrote a Guest Box in the previous edition, passed
away in 2016. Fred’s good friend and colleague Ian
Jamieson passed away in 2015. Ian had an important
influence on Fred’s understanding of genetic load
(Box 17.1), population viability, and rugby.

Fred W. Allendorf
W. Chris Funk
Sally N. Aitken
Margaret Byrne
Gordon Luikart
12 February 2021
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List of Symbols

This list includes mathematical symbols with
definitions and references to the primary chapters
in which they are used. There is quite a bit of
duplication, which reflects the general usage in

the population genetics literature. However, the
specific meaning should be apparent from the
context and chapter.

Symbol Definition Chapter

Latin Symbols

x̂ estimate of parameter x Appendix
(A)

A number of alleles at a locus 3, 4, 5, 6
B the number of lethal equivalents per gamete 17
CVA additive coefficient of variation 11
D Jost’s measure of differentiation 9
D Nei’s genetic distance 9, 20
D coefficient of gametic disequilibrium 10, 13
D

′
standardized measure of gametic disequilibrium 10

DB gametic disequilibrium caused by population subdivision 10
DC composite measure of gametic disequilibrium 10
E probability of an event A
e2 environmental effect in heritability 11
eµ evolvability; the proportional change expected in a trait mean

value under a unit strength of selection
11

f inbreeding coefficient 6
F realized proportion of genome that is identical by descent 17
Fij coefficient of coancestry 9
FIS departure from Hardy–Weinberg proportions within local demes

or subpopulations
5, 6, 9, 11, 17,
A

FIT overall departure from Hardy–Weinberg proportions 9
Fk temporal variance in allele frequencies A
FP pedigree inbreeding coefficient 6, 17, A
FSR proportion of the total differentiation due to differences among

subpopulations within regions
9

FROH proportion of the genome that is IBD as estimated by runs of
homozygosity

17

xxix



xxx L I S T O F S Y M B O L S

Symbol Definition Chapter

FST proportion of genetic variation due to differences among populations 3, 9, 12, 13,
14, 19, 21, A

F2ST FST value using the frequency of the most common allele and all other
allele frequencies binned together

9

G generation interval 7, 15, 21
GST FST extended for three or more alleles 9
G

′
ST standardized measure of GST 9

h gene diversity, computationally equivalent to He, especially useful for
haploid marker systems

3, 7

h degree of dominance of an allele 12
h heterozygosity 6, 7
h2 narrow sense heritability/proportion of phenotypic variance due to

genotypic value
11

HA alternative hypothesis A
HB broad sense heritability 11
He expected proportion of heterozygotes 3, 5, 6, 7, 9,

14, 19, 22, A
Ho observed heterozygosity 3, 6, 9, A
H0 null hypothesis A
HN narrow sense heritability 11, 15, 18, 21
HS mean expected heterozygosity 3, 9, 12, 19
HT total genetic variation 9, 12, 14, 19
K carrying capacity 6, 18
k number of gametes contributed by an individual to the next generation 7
k number of populations 20, A
L number of loci 17
m proportion of migrants 9, 19, 20, 21
mk mean kinship 22
mN number of migrants per generation 9
MP match probability 22
N population size 5, 6, 7, 9, 12,

A
n sample size 3, A
n ploidy level 3
Nb number of breeders per reproductive cycle 7, 23
NC census population size 7, 15, 18, 23,

A
NC proportion of individuals that reproduce in captivity 21
NW proportion of individuals that reproduce in the wild 21
Ne effective population size 4, 7, 8, 9, 10,

11, 12, 15,18,
21, 23, A

NeI inbreeding effective population size 7
NeV variance effective population size 7
Nf number of females in a population 6, 7, 9
Nm number of males in a population 6, 7, 9
NS Wright’s neighborhood size 9
P proportion of loci that are polymorphic 3, 5
P probability of an event 5, A
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Symbol Definition Chapter

p frequency of allele A1 (or A) 5, 6, 8, 9, 11
p proportion of patches occupied in a metapopulation 19
PE probability of paternity exclusion; average probability of excluding

(as father) a randomly sampled nonfather
22

PIav average probability of identity 22, 23
q frequency of allele A2 (or a) 5, 6, 8, 9, 11
Q probability two alleles are identical in state 9
Q probability of an individual’s genotype originating from each

population
20

QST proportion of total genetic variation for a phenotypic trait due to
genetic differentiation among populations (analogous to FST)

11

r frequency of allele A3 5
r correlation coefficient A
r rate of recombination 4, 10
r intrinsic population growth rate 6, 18
rA correlation between two traits 11
R correlation coefficient between alleles at two loci 10
R response to selection 11, 15
R number of recaptured individuals 18
R rate of adaptation to captivity 21
R(g) allelic richness in a sample of g genes 5, 23
RST analog to FST that accounts for differences length of microsatellite alleles 9, 20
S self-incompatibility locus 8, 18
S selection differential 11,15, 21
S effects of inbreeding on the probability of survival 17
S selfing rate 9
s selection coefficient (intensity of selection) 8, 9
sx standard deviation A
s2x sample variance A
t number of generations 6
VA proportion of phenotypic variability due to additive genetic differences

between individuals
11, 12, 18

VD proportion of phenotypic variability due to dominance effects
(interactions between alleles)

11

VE proportion of phenotypic variability due to environmental differences
between individuals

2, 11, 18

VG proportion of phenotypic variability due to genetic differences between
individuals

2, 11

VI proportion of phenotypic variability due to epistatic effects 11
Vk variance of the number of offspring contributed to the next generation 7
Vm increase in additive genetic variation per generation due to mutation 12, 18
VP total phenotypic variability for a trait 2, 11
Vq binomial sampling variance 6
W absolute fitness 8, 11
w relative fitness 8, 11
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Symbol Definition Chapter

Greek Symbols
α probability of a false positive (Type I) error A
β probability of a false negative (Type II error) A
∆ change in value from one generation to the next 6, 7, 8
δ proportional reduction in fitness due to selfing 17
θ population scaled mutation rate 12
λ factor by which population size increases each time unit 18, 19
μ population mean A
μ neutral mutation rate 12
π nucleotide diversity 3, 5
π probability of an event A
σ2
x population variance A

ΦST analogous to FST but incorporates genealogical 9
relationships among alleles

X2 chi-square statistic A

Other Symbols
x number of observations or times that an event occurs A
x̄ sample mean A
x̄2 sample variance (second moment) A
x̄3 skewness of sample distribution (third moment) A
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ABC approximate Bayesian computation
AFLP amplified fragment length polymorphism
AMOVA analysis of molecular variance
ANOVA analysis of variance
BAMBI Baltic Sea Marine Biodiversity
Bd Batrachochytrium dendrobatidis
BIC Bayesian Information Criterion
BLAST Basic Local Alignment Search Tool
BLUP best linear unbiased prediction
BOLD Barcode of Life Data Systems
bp base pair
BSC biological species concept
CBD Convention on Biological Diversity
CBOL Consortium for the Barcode of Life
cDNA complementary DNA
CITES Convention on International Trade in

Endangered Species of Wild Fauna and
Flora

CKMR close-kin mark–recapture
cM centimorgan
CMS cytoplasmic male sterility
CMR capture–mark–recapture
cpDNA chloroplast DNA
CPSG Conservation Planning Specialist Group
CRISPR clustered regularly interspaced short

palindromic repeats
CTSG Conservation Translocation Specialist

Group
CU conservation unit
CWD chronic wasting disease
DAPC discriminant analysis of principal

components
ddRAD double digest RAD
df degrees of freedom
DFTD devil facial tumor disease
DNA deoxyribonucleic acid
DPS distinct population segment
DDT dichlorodiphenyltrichloroethane

eDNA environmental DNA
EM expectation maximization
EST expressed sequence tag
EPBC Act Australian Environment Protection and

Biodiversity Conservation Act 1999
ESA United States Endangered Species Act
ESU evolutionarily significant unit
FAO Food and Agriculture Organization of the

United Nations
FCA frequency correspondence analysis
FIE fisheries induced evolution
Gb gigabase
GBS genotyping-by-sequencing
GCM global climate model
GEA genotype–environment association
GEBV genomic-estimated breeding value
GEOBON Group on Earth Observations Biodiversity

Observation Networks
GD gametic disequilibrium
GO gene ontology
GWAS genome-wide association study
HDFW Hawai’i Division of Forestry and Wildlife
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HIV human immunodeficiency virus
HW Hardy–Weinberg
IAM infinite allele model
IBD identical by descent
iBOL International Barcode of Life Initiative
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of the Sea
IPCC Intergovernmental Panel on Climate

Change
IPBES Intergovernmental Science-Policy
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LDE language development enzyme
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LOD log of odds ratio
LoF loss of function
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SSR simple sequence repeat
STR short tandem repeat
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UNDRIP UN Declaration on the Rights of
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UPGMA unweighted pair group method with
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US United States
USA United States of America
USDA US Department of Agriculture
USFS US Forest Service
USFWS US Fish and Wildlife Service
VNTR variable number tandem repeat
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WNS white-nose syndrome
WWF World Wide Fund for Nature
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CHAPTER 1

Introduction

Christmas Island pipistrelle, Example 1.1

The extinction of species, each one a pilgrim of four billion years of evolution, is an irreversible loss.
The ending of the lines of so many creatures with whom we have traveled this far is an occasion
of profound sorrow and grief. Death can be accepted and to some degree transformed. But the
loss of lineages and all their future young is not something to accept. It must be rigorously and
intelligently resisted.

(Gary Snyder 1990, p. 176)

The key for conservation genomics will be for the academic and policy spheres to communicate
in an effort to maintain a firm grasp on conceptual advances (driven by academic research) and
on-site conservation needs (recognized by practitioners).

(Aaron B.A. Shafer et al. 2015, p. 85)

We are living in a time of unprecedented extinctions
(Dirzo et al. 2014; Pimm et al. 2014; Humphreys
et al. 2019). Current extinction rates have been
estimated to be 1,000 times background rates and
are increasing (Pimm et al. 2014). Approximately
25% of mammals, 14% of birds, 42% of turtles and
tortoises, 40% of amphibians, 34% of conifers, and
35% of selected dicot plant taxa are threatened with
extinction (IUCN 2019). Most of these extinction
risk projections are based primarily on population
declines owing to habitat loss, overharvesting, and
pollution. For example, the Christmas Island pip-
istrelle bat was declared extinct by the International
Union for Conservation of Nature (IUCN) in 2017
(Example 1.1). Climate change is anticipated to
further increase extinction risks for many species
(Urban 2015).

The true picture is likely much worse than this
because the conservation status of most of the

world’s species remains poorly known. In addition,
estimates indicate that less than 30% of the world’s
arthropod species have been described (Hamilton
et al. 2010). Only ~6% of the world’s described
species have been evaluated for the IUCN Red List
(Table 1a in IUCN 2019). Few invertebrate species
(2%) have been evaluated, and the evaluations that
have been done have tended to focus on mol-
lusks and crustaceans. Among the insects, only the
swallowtail butterflies, dragonflies, and damselflies
have received much attention. A recent analysis has
concluded that the number of extinctions of seed
plants is more than four times that on the Red List
(Humphreys et al. 2019).

Protecting biodiversity poses perhaps the most
difficult and important questions ever faced by
science (Pimm et al. 2001). The problems are
difficult because they are so complex and cannot be
approached by the reductionist methods that have
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Example 1.1 Extinction

The nighttime forests of Christmas Island in the Indian
Ocean fell silent in 2009 when the last Christmas Island
pipistrelle, an echolocating bat, was no longer detected
with ultrasound recording devices (Matacic 2017). This
species was common until the 1980s, but surveys in the
1990s revealed a drastic decline of unknown cause (Mar-
tin et al. 2012). A survey in early 2009 indicated that some
20 bats remained. An attempt to capture these animals
for a captive breeding program failed. The last bat evad-
ed capture and was no longer detected with recording
devices after 27 August that year. The Christmas Island
pipistrelle was officially designated as extinct in 2017 by
the IUCN (Matacic 2017).

worked so well in other areas of science. Moreover,
solutions to these problems require amajor readjust-
ment of our social and political systems. An analysis
of progress toward international biodiversity tar-
gets has concluded that efforts will not result in an
improved state for biodiversity in the near future
(Tittensor et al. 2014). Biodiversity conservation is
arguably the greatest scientific and social challenge
currently faced by humanity because biodiversity
loss threatens the continued existence of our species
and the future of the biosphere itself.

Genetics and genomics have an important role
to play in the protection of biodiversity. The earli-
est applications of genetics to conservation began
in the early 1980s at the very beginning of conser-
vation biology (Soulé & Wilcox 1980). “Genomic”
techniques revolutionized the use of genetics in con-
servation beginning around 2010 (Allendorf et al.
2010). Applications of genomics to conservation
require a fundamental understanding of the theo-
ry of population genetics, as well as application of
the latest techniques.We have strived to accomplish
this goal in this work.

1.1 Genetics and civilization

Genetics has a long history of application to
improve human well-being, but also to suppress
and discriminate against people (Box 1.1). The
domestication of animals and cultivation of plants
is thought to have been the key step in the

development of civilization (Diamond 1997). Early
peoples directed genetic change in domestic and
agricultural species to suit their needs. It has been
estimated that the dog was domesticated some
35,000 years ago (Skoglund et al. 2015), followed by
goats and sheep around 10,000 years ago (Darling-
ton 1969; Zeder 2008). Wheat and barley were the
first crops to be domesticated in the eastern hemi-
sphere ~10,000 years ago; beans, squash, and maize
were domesticated in the western hemisphere at
about the same time (Kingsbury 2009).

The initial genetic changes brought about by culti-
vation and domesticationwere not due to intention-
al selection but apparently were inadvertent and
inherent in cultivation itself. Genetic change under
domesticationwas later accelerated by thousands of
years of purposeful selection as animals and crops
were selected to bemore productive or to be used for
new purposes. This process became formalized in
the discipline of agricultural genetics after the redis-
covery ofMendel’s principles at the beginning of the
20th century.

The “success” of these efforts can be seen every-
where. Humans have transformed much of the
landscape of our planet into croplands and pasture
to support the over 7 billion humans alive today.
It has been estimated that 35% of the Earth’s ice-
free land surface is now occupied by crops and
pasture (Foley et al. 2007), and that 24% of the pri-
mary terrestrial productivity is used by humans
(Haberl et al. 2007). Recently, we have begun to
understand the cost at which this success has been
achieved. The replacement ofwilderness by human-
exploited environments is causing the rapidly accel-
erating loss of species and ecosystems throughout
theworld. The continued growth of the human pop-
ulation and its direct and indirect effects on environ-
ments imperils a large proportion of thewild species
that now remain.

Aldo Leopold inspired a generation of ecologists
to recognize that the actions of humans are embed-
ded into an ecological network that should not be
ignored (Meine 1998):

A thing is right when it tends to preserve the integrity,
stability, and beauty of the biotic community. It is wrong
when it tends otherwise.

(Leopold 1949, p. 262)
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Box 1.1 Eugenics: The dark origins of population genetics and conservation

As conservation geneticists, we recognize the importance
of genetic diversity in maintaining healthy natural popula-
tions, and in facilitating adaptation to new environmental
conditions and challenges. However, both population genet-
ics and the American conservation movement have their
roots in the human eugenics movement of a century ago,
which viewed genetic diversity among human populations
as grounds for discrimination and prejudice. We acknowl-
edge this unfortunate part of the history of both population
genetics and conservation, and denounce how it has been
used to suppress and disadvantage people.

Many of the early statistical methods that still under-
lie genetic analysis were developed by devout eugenicists.
Francis Galton, a cousin of Charles Darwin, coined the term
eugenics in 1883 (Galton 1883, p. 24). Simply put, the field
of eugenics viewed human traits as the product of genes,
some trait variants more valuable than others, and there-
fore some human races as better than others (Rohlfs 2020).
Galton also developed the concept of linear regression anal-
ysis, initially termed “reversion to the mean” or “reversion
to mediocrity,” which remains widely used in analysis of
data of many types. Ronald A. Fisher, who was one of the
founders of population genetics, and who developed the

statistical method analysis of variance, was also a staunch
eugenicist. Much of The Genetical Theory of Natural Selec-
tion (Fisher 1930) was devoted to Fisher’s concern with the
genetic effects of the lower fertility of the English upper
class. US President Theodore Roosevelt and his conservation
chief Gifford Pinchot, considered fathers of the conservation
movement in their country, were both part of the eugenics
movement (Wohlforth 2010). The racism that exists in many
societies and affects the daily lives of people of color has
historical connections to eugenics.

The fields of population genetics and conservations have
fortunately progressed a great deal in the past century
away from this past. However, they still suffer from the
low ethnic and racial diversity typical of ecology and evo-
lutionary biology more broadly (e.g., Graves 2019). The field
of conservation genetics will improve further as the diver-
sity of scientists in this field increases, and members of
under-represented groups are welcomed warmly and equi-
tably into the community of research and practice. Just as
genetic diversity increases the resilience and adaptability
of plant and animal populations, the diversity of people in
this field will bring new ideas and practices for conserving
biodiversity.

The organized actions of humans are controlled by
sociopolitical systems that operate into the future
on a timescale of a few years at most (e.g., the next
election). All too often our systems of conservation
are based on the economic interests of humans in
the immediate future. We tend to disregard, and
often mistreat, elements that lack immediate eco-
nomic value but that are essential to the stability of
the ecosystems upon which our lives and the future
of our children depend.

In 1974, Otto Frankel published a landmark paper
entitled “Genetic conservation: our evolutionary
responsibility,” which set out conservation priori-
ties:

First, … we should get to know much more about the
structure and dynamics of natural populations and com-
munities. … Second, even now the geneticist can play a
part in injecting genetic considerations into the planning
of reserves of any kind.… Finally, reinforcing the grounds
for nature conservation with an evolutionary perspective

may help to give conservation a permanence which a util-
itarian, and even an ecological grounding, fail to provide
in men’s minds.

(Frankel 1974, p. 63)

Frankel, an agricultural plant geneticist, came to
similar conclusions to Leopold, a wildlife biologist,
by a very different path. In Frankel’s view, we
cannot anticipate the futureworld inwhich humans
will live in a century or two. Therefore, it is our
responsibility to “keep evolutionary options open.”
It is crucial to apply our understanding of genetics
and evolution to conserving the natural ecosystems
that are threatened by human civilization (Cook &
Sgrò 2018).

1.2 Genetics, genomics, and conservation

Darwin (1896, p. 99) was the first to consider the
importance of genetics and evolution in the persis-
tence of natural populations. He expressed concern
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that deer in British nature parks may be subject
to loss of vigor because of their small popula-
tion size and isolation. Voipio (1950) presented the
first comprehensive consideration of the applica-
tion of population genetics to the management of
natural populations. He was primarily concerned
with the effects of genetic drift (Chapter 6) in
game populations that were reduced in size by
trapping or hunting and fragmented by habitat
loss.

The modern concern for genetics in conserva-
tion began in the 1970s when Frankel (1970, 1974)
began to raise the alarm about the loss of primitive
crop varieties and their replacement by genetical-
ly uniform cultivars. It is not surprising that these
initial considerations of conservation genetics dealt
with species that were used directly as resources
by humans. Seventy-five percent of crop diversity
was lost between 1900 and 2000, and only a few
livestock breeds now dominate among domesticat-
ed farm animals (FAO 2010). Conserving the genetic
resources of wild relatives of agricultural species
remains an important area of conservation genetics
(Hanotte et al. 2010). For example, the commercial
production of sugarcane was saved by the use of
germplasm fromwild relatives (Soltis & Soltis 2019).
However, diversity of crop wild relatives is poor-
ly represented in gene banks (Castañeda-Álvarez
et al. 2016). At the same time, geneticists are seeking
stress-related genes from wild progenitors of some
crops to assist in breeding efforts for new climates
(Warschefsky et al. 2014).

The application of genetics and evolution to con-
servation in a more general context did not blossom
until around 1980, when three books established the
foundation for applying the principles of genetics
and evolution to conservation of biodiversity (Soulé
& Wilcox 1980; Frankel & Soulé 1981; Schonewald-
Cox et al. 1983). Today conservation genetics is a
well-established discipline, with its own journals
(e.g., Conservation Genetics and Conservation Genet-
ics Resources) and two textbooks, including this one
and Frankham et al. (2010).

The subject matter of papers published on conser-
vation genetics is extremely broad. However, most
articles dealing with conservation and genetics fit
into one of the five general categories below:

1. Management and reintroduction of captive pop-
ulations, and the restoration of biological com-
munities.

2. Description and identification of individuals,
genetic population structure, kin relationships,
and taxonomic relationships.

3. Detection and prediction of the effects of habitat
loss, fragmentation, isolation, and genetic rescue.

4. Detection and prediction of the effects of
hybridization and introgression.

5. Understanding the relationships between fitness
of individuals or local adaptation of populations
and environmental factors.

These topics are listed in order of increasing
complexity and decreasing uniformity of agree-
ment among conservation geneticists. Although the
appropriateness of captive breeding in conservation
has been controversial, procedures for genetic man-
agement of captive populations are well developed
with relatively little controversy. The relationship
between specific genotypes and fitness or adapta-
tion has been a particularly vexing issue in evolu-
tionary and conservation genetics, but newgenomic
methods have made this more tractable to study.
Many recent studies have shown that natural selec-
tion can bring about rapid genetic changes in pop-
ulations that may have important implications for
conservation (Homola et al. 2019).

As in other areas of genetics, model organisms
have played an important research role in conser-
vation genetics (Frankham 1999). Many important
theoretical issues in conservation biology cannot
be answered by empirical research on threatened
species (e.g., how much gene flow is required to
prevent the inbreeding effects of small population
size?). Such empirical questions are often best
resolved in species that can be raised in captivity
in large numbers with a rapid generation inter-
val (e.g., the fruit fly Drosophila, the guppy, deer
mouse, and the fruit fly analog in plants, Arabidop-
sis thaliana). Such laboratory investigations can also
provide excellent training opportunities for stu-
dents. We have tried to provide examples from
both model and threatened species. Where pos-
sible we have chosen examples from threatened
species or wild populations, even though many of
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the principles were first demonstrated with model
species.

1.2.1 Using genetics to understand basic
biology

Molecular genetic descriptions of individuals are
also used to understand the basic biology of popula-
tions. For example, genetic information can provide
valuable insight into the demographic structure of
populations (Escudero et al. 2003; Palsbøll et al.
2007). The total population size can be estimated
from the number of unique genotypes sampled in
a population for species that are difficult to cen-
sus (Luikart et al. 2010). Moreover, many demo-
graphic models assume a single randomly mating
population. The distribution of genetic variation
over a species range can be used to identify what
geographic units can be considered separate demo-
graphic units. Consider a population of trout found
within a single small lake that might appear to be
a demographic unit (Example 9.2). Under some cir-
cumstances these trout could actually represent two
or more separate reproductive (and demographic)
groups with little or no exchange between them
(e.g., Ryman et al. 1979).

Genetic analysis can also be used to detect cryp-
tic effects of climate change on the distribution of
species. A massive heatwave affected many marine
species along the coast of Western Australia in 2011
(Gurgel et al. 2020). The amount of underwater for-
est cover of two forest-forming seaweeds quickly
recovered so that there was no apparent effect of
the heatwave. However, genetic analysis of both
species before and after the extreme event indi-
cated substantial loss of genetic diversity of both
species. Thus, this marine heatwave resulted in a
massive and cryptic loss of genetic diversity that
may compromise their ability to respond to future
environmental change.

Molecular genotyping can also be used to ver-
ify the presence of rare species (Chapter 22). For
example, wolverines had not been seen in the state
of California since 1922 (Moriarty et al. 2009). When
photographic evidence suggested the presence of
a wolverine in the Sierra Nevada Mountains in
2008, genetic analysis of scat and hair confirmed its

presence. In addition, the comparison of the geno-
type of this individual with samples throughout the
west indicated that this individual most likely orig-
inated in the Sawtooth Mountains of Idaho, nearly
600 km away.

Genetic analysis has also been used to document
some other amazing animal journeys. A cougar
originating from the Black Hills of South Dakota
left its genetic fingerprints across northern North
America from South Dakota to Minnesota to Wis-
consin to New York (Hawley et al. 2016). Finally,
a cougar killed by a vehicle in Connecticut turned
out to be this same animal that had traveled over
2,400 km!

1.2.2 Invasive species and pathogens

Invasive species are recognized as one of the top two
threats to global biodiversity (Chapter 14). Stud-
ies of genetic diversity and the potential for rapid
evolution of invasive species may provide useful
insights into what causes species to become inva-
sive (Sakai et al. 2001; Lee & Gelembiuk 2008). More
information about the genetics and evolution of
invasive species or native species in invaded com-
munities, as well as their interactions, may lead to
predictions of the relative susceptibility of ecosys-
tems to invasion, identification of key alien species,
and predictions of the subsequent effects of removal
(e.g., Roe et al. 2019).

Moreover, genetic descriptions of populations
can be used to reconstruct the invasion histo-
ry and to identify the source populations of
biological invasions (Signorile et al. 2016). This
information can also be used to detect possible
human-mediated translocations and to better man-
age invasions by identifying transportation path-
ways that can be targeted for more stringent
control.

Similarly, genetic descriptions of population con-
nectivity (e.g., gene flow) can be used to reconstruct
pathways of host movement and pathogen spread.
Knowing corridors or barriers to movement and
spread can help managers monitor, predict, and
prevent infectious disease transmission and out-
breaks (Blanchong et al. 2008). Study of the genetics
of pathogens can also provide valuable information
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about the genetic population structure and demog-
raphy of host species (Biek et al. 2006).

1.2.3 Conservation genomics

Recent advances in molecular genetics, including
sequencing of the entire genomes of many species,
have revolutionized applications of genetics (e.g.,
medicine, forestry, and agriculture). We currently
have complete genome sequences from thousands
of species, as well as many individuals with-
in species (Ellegren 2014). The Earth BioGenome
Project intends to characterize the genomes of all of
Earth’s eukaryotic biodiversity over a 10-year peri-
od. This coming explosion of information has trans-
formed our understanding of the amount, distribu-
tion, and functional significance of genetic variation
in natural populations (Allendorf et al. 2010; Shafer
et al. 2015).

Now is a crucial time to explore the potential
applications of this information revolution for con-
servation genetics, as well as to recognize limita-
tions in applying genomic tools to conservation
issues. The ability to examine hundreds or thou-
sands of genetic markers with relative ease has
made it possible to answer many important ques-
tions in conservation that have been intractable until
now (Figure 1.1).

1.2.3.1 Genetic engineering

Some have proposed that genetic engineering (or
genetic modification) should be used to intro-
duce adaptive variants to prevent extinction (e.g.,
Thomas et al. 2013), but this approach is not like-
ly to be of general utility (Hedrick et al. 2013a). It
might be applicable in a very few individual cases,
for example, for some long-lived plants, where dis-
ease resistance is primarily due to single genes. In
general, however, identification of “missing” adap-
tive single-gene variants in endangered species and
increasing their frequency in populations without
causing harmful side effects is infeasible in the
wild except in a small number of special cases
(e.g., where novel pathogens have been introduced;
Kardos & Shafer 2018). However, such research
is starting to play an important role in agricul-
ture, identifying valuable variants in domesticated

species that live in managed environments (Zhu
et al. 2020).

Furthermore, when genetically based fitness
reductions have been documented in endangered
populations, they almost always have been traced
not to a lack of adaptive diversity, but to increased
frequency of detrimental alleles and increased
homozygosity caused by genetic drift and inbreed-
ing (Hedrick et al. 2013a). Those were the factors
causing low fitness in Florida panthers and Swedish
vipers. In these cases, fitness was increased by
genetic rescue, the introduction of unrelated indi-
viduals from other populations. The introduction of
specific adaptive alleles by genetic engineering in
these cases, as proposed by Thomas et al. (2013), will
not overcome the genome-wide effects of inbreed-
ing depression.

Nevertheless, there are some situations in which
genetic engineering should be considered as a con-
servation genetics technique (Strauss et al. 2015).
Many native trees in the northern temperate zone
have been devastated by introduced diseases for
which little or no genetic resistance exists (e.g.,
European and North American elms, and the North
American chestnut). Adams et al. (2002) suggested
that transfer of resistance genes by genetic modi-
fication is perhaps the only available method for
preventing the loss of important tree species when
no native variation in resistance to introduced dis-
eases exists. Transgenic trees have been developed
for both American elm and American chestnut, and
are now being tested for stable resistance to Dutch
elm disease and chestnut blight (Popkin 2018). The
use of genetic engineering to improve agricultur-
al productivity has been controversial but is now
widespread for some crops. There will no doubt
continue to be a lively debate about the use of
these procedures to prevent the extinction of natural
populations.

The loss of foundation tree species is likely to
affect many other species as well. For example,
whitebark pine is currently one of the two most
important food resources for grizzly bears in the
Yellowstone National Park ecosystem (Mattson &
Merrill 2002). However, most of the whitebark pine
in this region is projected to be extirpated because of
an exotic pathogen, and with predicted geograph-
ic shifts in the climatic niche-based habitat of this
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species in the next century (Warwell et al. 2007;
McLane & Aitken 2012).

1.3 What should we conserve?

Conservation can be viewed as an attempt to protect
the genetic diversity produced by evolution over
the previous 3.5 billion years on our planet. This is
an overwhelming task. Over 2 million species have
been described and perhaps 100 million species
have yet to be described (Soltis & Soltis 2019). Dar-
win (1859) was the first to represent this diversity
in a diagram that he referred to as the “Tree of Life.”
The first comprehensive Tree of Life for all described
specieswas published in 2015 (Figure 1.2; Hinchcliff
et al. 2015).

Genetic diversity is one of three forms of biodiver-
sity recognized by the IUCN as deserving conser-
vation, along with species and ecosystem diversity.
Unfortunately, genetics has been generally ignored
by the member countries in their National Biodiver-
sity Strategy and Action Plans developed to imple-
ment the Convention on Biological Diversity (CBD)
(Laikre et al. 2010a; Hoban et al. 2020).

We can consider the implications of the relation-
ship between genetic diversity and conservation at
many levels: genes, individuals, populations, vari-
eties, subspecies, species, genera, and so on. Genetic
diversity provides a retrospective view of the evolu-
tionary history of taxa (phylogenetics), a snapshot
of the current genetic structure within and among
populations (population and ecological genetics),
and a glimpse ahead to the future evolutionary

Population size Population structure

Migration rates

Hybridization

Local adaptation

Outbreeding depression

Genetic drift

Loss of genetic diversity

Loss of adaptive variation

Inbreeding

Inbreeding depression

Genotype-by-environment
interactions

Demographic vital rates

Population growth or viability

Figure 1.1 Schematic diagram of interacting factors in conservation of natural populations. Traditional conservation genetics, using neutral
markers, provides direct estimates of some interacting factors (blue). Conservation genomics can address a wider range of factors (red). It also
promises more precise estimates of neutral processes (blue) and understanding of the specific genetic basis of all of these factors. For example,
traditional conservation genetics can estimate overall migration rates or inbreeding coefficients, whereas genomic tools can assess gene flow rates
that are specific to adaptive loci or founder-specific inbreeding coefficients. From Allendorf et al. (2010).
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Figure 1.2 Comprehensive Tree of Life showing phylogenetic relationships among over two million described species. The arrow indicates the
position of humans in this tree. Redrawn from Soltis & Soltis (2019).

potential of populations and species (evolutionary
biology). Genomic tools have providednew insights
into all of these areas.

1.3.1 Phylogenetic diversity

While species have historically been prioritized
for conservation efforts and resources based on
their charismatic appeal and high profile, scientif-
ically justified methods have been developed to
identify those species that should be of highest
importance from an evolutionary standpoint. The
amount of genetic divergence based upon phy-
logenetic relationships is often considered when

setting conservation priorities for different species
(Mace et al. 2003; Rosauer & Mooers 2013). For
example, the United States Fish and Wildlife Ser-
vice (USFWS) assigns priority for listing under the
Endangered Species Act (ESA) on the basis of “tax-
onomic distinctiveness” (USFWS 1983). Species of a
monotypic genus receive the highest priority. The
tuatara is an extreme example that raises several
important issues about assigning conservation val-
ue and allocating our conservation efforts based
upon taxonomic distinctiveness (Example 1.2).

Faith (2008) recommended integrating evolution-
ary processes into conservation decision-making by
considering phylogenetic diversity. Faith provides


