

and the **GENOMICS** of **DOPULATION**

 Fred W.
 W. Chris
 Sally N.
 Margaret
 Gordon

 ALLENDORF
 FUNK
 AITKEN
 BYRNE
 LUIKART

Conservation and the Genomics of Populations

Conservation and the Genomics of Populations

Third Edition

Fred W. Allendorf

Division of Biological Sciences, University of Montana, USA

W. Chris Funk

Department of Biology, Colorado State University, USA

Sally N. Aitken

Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Canada

Margaret Byrne

Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Australia

Gordon Luikart

Flathead Lake Biological Station, University of Montana, USA With illustrations by Agostinho Antunes University of Porto, Portugal

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Fred W. Allendorf, W. Chris Funk, Sally N. Aitken, Margaret Byrne, and Gordon Luikart 2022

Chapter opening images © Agostinho Antunes

The moral rights of the authors have been asserted

First Edition published in 2007 as *Conservation and the Genetics of Populations* by Blackwell Publishing Ltd.

Second Edition published in 2013 as *Conservation and the Genetics of Populations* by John Wiley & Sons Ltd.

Third Edition published in 2022

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data

Data available

Library of Congress Control Number: 2021937945

ISBN 978-0-19-885656-6 (hbk) ISBN 978-0-19-885657-3 (pbk)

DOI: 10.1093/oso/9780198856566.001.0001

Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY

Front cover image: Yellow-spotted monitor (*Varanus panoptes*) in Litchfield National Park, Northern Territory, Australia. The collapse of this species is perhaps the most high-profile loss caused by the invasion of the cane toad (Guest Box 14). Photo by Ed Kanze.

Back cover image: Old growth Sitka spruce (*Picea sitchensis*) in Carmanah Walbran Provincial Park, British Columbia, Canada. The climber is sampling the tree from different locations in order to estimate somatic mutation rates (Section 12.1). Photo by T.J. Watt.

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work. We dedicate this book to Michael E. Soulé, who died while we were working on this edition (Crooks et al. 2020). Michael was instrumental in the founding of the field of conservation biology by inspiring his basic science friends to apply their efforts to conserve biodiversity and by organizing a series of meetings in the late 1970s. He also co-authored the first book that applied the principles of genetics to conservation (Frankel & Soulé 1981).

Contents

Preface to the Third Edition	xxi
Acknowledgments	xxv
Guest Box Authors	xxvii
List of Symbols	xxix
List of Abbreviations	xxxiii

Pa	art I Introduction	1
1	Introduction	3
	1.1 Genetics and civilization	4
	1.2 Genetics, genomics, and conservation	5
	1.2.1 Using genetics to understand basic biology	7
	1.2.2 Invasive species and pathogens	7
	1.2.3 Conservation genomics	8
	1.3 What should we conserve?	9
	1.3.1 Phylogenetic diversity	10
	1.3.2 Species or ecosystems	13
	1.3.3 Populations or species	14
	1.4 How should we conserve biodiversity?	15
	1.5 The future	16
	Guest Box 1: Sarah P. Otto, Extinction and evolution in a human-altered world	18
2	Phenotypic Variation in Natural Populations	19
	2.1 Color pattern	21
	2.2 Morphology	25
	2.3 Behavior	27
	2.4 Life history	29
	2.5 Phenology	30
	2.6 Disease resistance	31
	2.7 Variation within and among populations	32
	2.7.1 Countergradient variation	36
	2.8 Phenotypic variation and conservation	37
	2.8.1 Genetic basis of phenotypic variation	37
	2.8.2 Color polymorphism and population viability	37

	Guest Box 2: Kelly R. Zamudio, The genomic basis of variation in disease	
	resistance	38
3	Genetic Variation in Natural Populations	39
	3.1 Chromosomes	40
	3.1.1 Karyotypes	42
	3.1.2 Sex chromosomes	44
	3.1.3 Polyploidy	44
	3.1.4 Numbers of chromosomes	46
	3.1.5 Chromosomal size	46
	3.1.6 Inversions	47
	3.1.7 Translocations	49
	3.1.8 Chromosomal variation and conservation	50
	3.2 Mitochondrial and chloroplast DNA	50
	3.3 Single-copy nuclear loci	54
	3.3.1 Protein electrophoresis	54
	3.3.2 Microsatellites	55
	3.3.3 Single nucleotide polymorphisms (SNPs)	56
	3.3.4 Sex-linked markers	56
	3.4 Multiple locus techniques	56
	3.4.1 Minisatellites	57
	3.4.2 AFLPs and ISSRs	57
	3.5 Genetic variation within and among populations	58
	3.5.1 Quantifying genetic variation within natural populations	58
	3.5.2 Estimates of genetic variation within natural populations	59
	3.5.3 Significance of the amount of variation within populations	61
	Guest Box 3: Sally Potter and Janine E. Deakin, Widespread chromosomal	
	diversity across rock-wallabies and implications for conservation	63
4	Population Genomics	66
	4.1 High throughput sequencing	68
	4.1.1 History of DNA sequencing technology	68
	4.1.2 Next-generation sequencing (NGS)	68
	4.1.3 Single nucleotide polymorphisms (SNPs)	69
	4.1.4 Inferences from sequence data	70
	4.2 Linkage maps and recombination	72
	4.3 Whole genome sequencing and reference genomes	76
	4.4 Whole genome resequencing	78
	4.5 Reduced representation sequencing	78
	4.5.1 Restriction site-associated DNA sequencing (RADseq)	70
	methods	79
	4.5.2 Targeted sequence capture	83
	4.5.5 Sequencing of population pools (pool-seq)	83
	4.0 Filtering sequence data	84
	4.7 Other SINF genotyping methods	85
	4.0 Transcriptomics	85
	4.9 Iranscriptomics	86
	4.10 Epigenetics	86

93

4.11	Metagenomics	87
	4.11.1 Host-associated microbial communities	89
	4.11.2 Environmental DNA (eDNA)	89
4.12	Other "omics" and the future	90
Gues	st Box 4: Paul A. Hohenlohe, Genomics and conservation of Tasmanian	
devil	s in the face of transmissible cancer	91

Part II Mechanisms of Evolutionary Change

5	Random mating populations: Hardy–Weinberg Principle	95
	5.1 Hardy–Weinberg principle	96
	5.2 HW proportions	98
	5.3 Testing for HW proportions	98
	5.3.1 Small sample sizes	100
	5.3.2 Many alleles	102
	5.3.3 Multiple simultaneous tests	102
	5.3.4 Testing large-scale genomic data for HW proportions	103
	5.4 Estimation of allele frequencies	105
	5.4.1 Recessive alleles	105
	5.4.2 Null alleles	106
	5.5 Sex-linked loci	108
	5.5.1 Pseudoautosomal inheritance	108
	5.6 Estimation of genetic variation	110
	5.6.1 Heterozygosity	110
	5.6.2 Allelic richness	111
	5.6.3 Proportion of polymorphic loci	111
	Guest Box 5: James F. Crow, Is mathematics necessary?	112
6	Small Populations and Genetic Drift	113
	6.1 Genetic drift	114
	6.2 Changes in allele frequency	116
	6.3 The inbreeding effect of small populations	117
	6.4 Loss of allelic diversity	119
	6.5 Founder effect	121
	6.6 Genotypic proportions in small populations	125
	6.7 Effects of genetic drift	127
	6.7.1 Changes in allele frequency	127
	6.7.2 Loss of allelic diversity	128
	6.7.3 Inbreeding depression	129
	Guest Box 6: Yasmin Foster, Nicolas Dussex, and Bruce C. Robertson.	
	Detecting bottlenecks in the critically endangered kākāpō	131
7	Effective Population Size	133
	7.1 Concept of effective population size	133
	7.2 Unequal sex ratio	135

	7.3 Nonrandom number of progeny	136
	7.4 Fluctuating population size	138
	7.5 Overlapping generations	140
	7.6 Variance versus inbreeding effective population size	140
	7.7 Cytoplasmic genes	140
	7.8 The coalescent	143
	7.9 Limitations of effective population size	144
	7.9.1 Allelic diversity and $N_{\rm e}$	144
	7.9.2 Generation interval	145
	7.9.3 Gene flow	146
	7.10 Effective population size in natural populations	146
	7.11 How can genomics advance understanding of N_e ?	147
	Guest Box 7: Linda Laikre and Nils Ryman, Effective population size in brown	
	trout: Lessons for conservation	149
8	Natural Selection	151
	8.1 Fitness	153
	8.2 Single locus with two alleles	154
	8.2.1 Directional selection	154
	8.2.2 Heterozygous advantage (overdominance)	155
	8.2.3 Heterozygous disadvantage (underdominance)	156
	8.2.4 Selection and HW proportions	158
	8.3 Multiple alleles	158
	8.3.1 Heterozygous advantage and multiple alleles	159
	8.4 Frequency-dependent selection	160
	8.4.1 Two alleles	160
	8.4.2 Frequency-dependent selection in nature	161
	8.4.3 Self-incompatibility locus in plants	161
	8.4.4 Complementary sex determination locus in invertebrates	161
	8.5 Adaptive significance of cytoplasmic genomes	163
	8.5.1 Plants	163
	8.5.2 Animals	163
	8.6 Natural selection in small populations	164
	8.6.1 Directional selection	164
	8.6.2 Underdominance and drift	165
	8.6.3 Heterozygous advantage and drift	165
	8.7 Detection of natural selection	165
	8.8 Natural selection and conservation	167
	<i>Guest Box 8: Shane C. Campbell-Staton, Winter storms drive rapid phenotypic,</i>	
	regulatory, and genomic shifts in the green anole lizard	170
9	Population Subdivision	172
	9.1 F-statistics	173
	9.1.1 The Wahlund effect	175
	9.1.2 When is F_{IS} not zero?	176

	9.2	Spatial patterns of relatedness within local populations	177
		9.2.1 Effects of dispersal distance and population density	177
		9.2.2 Effects of spatial distribution of relatives on inbreeding	
		probability	179
	9.3	Genetic divergence among populations and gene flow	179
		9.3.1 Complete isolation	180
		9.3.2 Gene flow	180
	9.4	Gene flow and genetic drift	181
		9.4.1 Island model	181
		9.4.2 Stepping-stone model	183
	9.5	Continuously distributed populations	184
	9.6	Cytoplasmic genes and sex-linked markers	184
		9.6.1 Cytoplasmic genes	184
		9.6.2 Sex-linked loci	185
	9.7	Gene flow, genetic drift, and natural selection	185
		9.7.1 Heterozygous advantage	187
		9.7.2 Divergent directional selection	188
		9.7.3 Comparisons among loci	188
	9.8	Limitations of F_{ST} and other measures of subdivision	189
		9.8.1 Genealogical information	189
		9.8.2 High heterozygosity within subpopulations	190
		9.8.3 Other measures of divergence	192
		9.8.4 Hierarchical structure	192
	9.9	Estimation of gene flow	193
		9.9.1 F_{ST} and indirect estimates of mN	193
		9.9.2 Private alleles	194
		9.9.3 Maximum likelihood and the coalescent	195
		9.9.4 Assignment tests and direct estimates	196
		9.9.5 Current versus historical gene flow	199
	9.10	Population subdivision and conservation	199
	Gues	st Box 9: Uma Ramakrishnan, A decade of tiger conservation genetics in	
	the I	ndian subcontinent	201
10	Bey	ond Individual Loci	204
	10.1	Gametic disequilibrium	205
		10.1.1 Other measures of gametic disequilibrium	208
		10.1.2 Associations between cytoplasmic and nuclear genes	208
	10.2	Small population size	209
	10.3	Natural selection	210
		10.3.1 Genetic hitchhiking	211
		10.3.2 Associative overdominance	211
		10.3.3 Genetic draft	212
	10.4	Population subdivision	212
	10.5	Hybridization	213
	10.6	Estimation of gametic disequilibrium	214
		10.6.1 Two loci with two alleles each	214
		10.6.2 More than two alleles per locus	216

	10.7 Strand theory: Junctions and chromosome segments	216
	10.7.1 Microhaplotypes	217
	10.8 Multiple loci and conservation	217
	Guest Box 10: Robin S. Waples, Estimation of effective population size using	
	gametic disequilibrium with genomic data	222
11	Quantitative Genetics	223
	11.1 Heritability	224
	11.1.1 Broad-sense heritability	225
	11.1.2 Narrow-sense heritability	225
	11.1.3 Estimating heritability	226
	11.1.4 Genotype-by-environment interactions	229
	11.2 Selection on quantitative traits	230
	11.2.1 Heritabilities and allele frequencies	232
	11.2.2 Genetic correlations	233
	11.3 Finding genes underlying quantitative traits	236
	11.3.1 QTL mapping	237
	11.3.2 Candidate gene approaches	238
	11.3.3 Genome-wide association mapping	239
	11.4 Loss of quantitative genetic variation	242
	11.4.1 Effects of genetic drift and bottlenecks	242
	11.4.2 Effects of selection	243
	11.5 Divergence among populations	244
	11.6 Quantitative genetics and conservation	246
	11.6.1 Response to selection in the wild	248
	11.6.2 Can molecular genetic variation within populations	• • •
	estimate quantitative variation?	249
	11.6.3 Does population divergence for molecular markers	240
	estimate divergence for quantitative traits?	249
	Guest Box 11: Victoria L. Sork, How genome-enhanced breeding values can	
	assist conservation of tree populations facing climate warming	251
12	Mutation	253
	12.1 Process of mutation	254
	12.1.1 Chromosomal mutations	256
	12.1.2 Molecular mutations	256
	12.1.3 Quantitative characters	258
	12.1.4 Transposable elements, stress, and mutation rates	258
	12.2 Selectively neutral mutations	259
	12.2.1 Genetic variation within populations	259
	12.2.2 Population subdivision	262
	12.3 Harmful mutations	262
	12.4 Advantageous mutations	263
	12.5 Recovery from a bottleneck	265
	Guest Box 12: Philip W. Hedrick, Mutation, inbreeding depression, and	
	adaptation	267

Part III		rt III Evolutionary Response to Anthropogenic Changes	
13	Hybi	ridization	271
	13.1	Detecting and describing hybridization	272
		13.1.1 Diagnostic loci	273
		13.1.2 Using many single nucleotide polymorphism loci to detect	
		hybridization	276
		13.1.3 Gametic disequilibrium	277
	13.2	Natural hybridization	278
		13.2.1 Intraspecific hybridization	278
		13.2.2 Interspecific hybridization	279
		13.2.3 Hybrid zones	281
		13.2.4 Hybrid taxa	281
	13.3	Anthropogenic hybridization	283
		13.3.1 Hybridization without introgression	284
		13.3.2 Hybridization with introgression	286
		13.3.3 Hybridization between wild species and their	
		domesticated relatives	286
		13.3.4 Hybridization and climate change	287
	13.4	Fitness consequences of hybridization	287
		13.4.1 Hybrid superiority	288
		13.4.2 Intrinsic outbreeding depression	288
		13.4.3 Extrinsic outbreeding depression	290
		13.4.4 Long-term fitness effects of hybridization	291
	13.5	Hybridization and conservation	291
		13.5.1 Protection of hybrids	291
		13.5.2 Ancient hybrids versus recent hybridization	294
		13.5.3 How much admixture is acceptable?	294
		13.5.4 Predicting outbreeding depression	295
	Gues	t Box 13: Danielle Stephens, Peter J.S. Fleming, and Oliver F. Berry,	
	Hybi	ridization in Australian dingoes	296
14	Inva	sive Species	298
	14.1	Why are invasive species so successful?	300
		14.1.1 Why are invasive species that have gone through a	
		founding bottleneck so successful?	300
		14.1.2 Why are introduced species that are not locally adapted so	
		successful at replacing native species?	301
	14.2	Genetic analysis of introduced species	302
		14.2.1 Molecular identification of invasive species	302
		14.2.2 Molecular identification of origins of invasive species	303
		14.2.3 Distribution of genetic variation in invasive species	303
		14.2.4 Mechanisms of reproduction	305
		14.2.5 Quantitative genetic variation	307
		-	

	14.3 Establishment and spread of invasive species	308
	14.3.1 Propagule pressure	308
	14.3.2 Spread	309
	14.4 Hybridization as a stimulus for invasiveness	309
	14.5 Eradication, management, and control	310
	14.5.1 Units of eradication	310
	14.5.2 Genetics and biological control	311
	14.5.3 Pesticides and herbicides	312
	14.5.4 Gene editing and gene drive	312
	14.6 Emerging diseases and parasites	314
	14.6.1 Detection and quantification of disease vectors	314
	14.6.2 Tracking origins of infectious disease outbreaks	314
	14.6.3 Assessing transmission routes	316
	Guest Box 14: Richard Shine and Lee Ann Rollins, Rapid evolution of	
	introduced cane toads	318
15	Exploited Populations	320
	15.1 Loss of genetic variation	321
	15.2 Unnatural selection	325
	15.3 Spatial structure	330
	15.4 Effects of releases	334
	15.4.1 Genetic effects of releases	334
	15.4.2 Effects on species and ecosystem diversity	336
	15.4.3 Monitoring large-scale releases	336
	15.5 Management and recovery of exploited populations	337
	15.5.1 Loss of genetic variation	337
	15.5.2 Unnatural selection	338
	15.5.3 Subdivision	338
	15.5.4 Protected areas	340
	Guest Box 15: Paolo Momigliano and Juha Merilä, Baltic Sea flounder:	
	<i>Cryptic species, undetected stock structure, and the decline of a local fishery</i>	341
16	Climate Change	343
	16.1 Predictions and uncertainties of future climates	344
	16.2 Phenotypic plasticity	345
	16.3 Epigenetic effects	347
	16.4 Adaptation to climate change	349
	16.4.1 Theoretical predictions of capacity for adaptation	349
	16.4.2 Phenotypic approaches for detecting adaptation to climate	
	change	350
	16.4.3 Genomic approaches for predicting adaptation to climate	
	change	353
	16.5 Species range shifts	358
	16.5.1 Modeling species distribution	358
	16.5.2 Observed species range shifts	360
	16.6 Extirpation and extinction	361

16.7 Management in the face of climate change	363
16.7.1 Assisted migration	364
16.7.2 <i>Ex situ</i> conservation	366
Guest Box 16: Rachael A. Bay, Genomic prediction of coral adaptation to	
warming	367

Part IV Conservation and Management

17	Inbreeding Depression	371
	17.1 Inbreeding	372
	17.1.1 The pedigree inbreeding coefficient	374
	17.1.2 Expected versus realized proportion of the genome IBD	376
	17.2 Estimation of <i>F</i> with molecular markers	380
	17.2.1 Using unmapped loci to estimate <i>F</i>	381
	17.2.2 Using mapped loci to estimate <i>F</i>	382
	17.3 Causes of inbreeding depression	382
	17.4 Detection and measurement of inbreeding depression	383
	17.4.1 Lethal equivalents	384
	17.4.2 Estimates of inbreeding depression	385
	17.4.3 Estimates of inbreeding depression with marker-based	
	estimates of F	386
	17.4.4 Founder-specific inbreeding effects	387
	17.4.5 Are there species without inbreeding depression?	389
	17.5 Genetic load and purging	389
	17.5.1 Effectiveness of purging	389
	17.5.2 Why is purging not more effective?	392
	17.5.3 Evidence for selection against homozygosity in inbred	202
	individuals	393
	17.6 Inbreeding depression and conservation	393
	Guest Box 17: Marty Kardos, The genomics of inbreeding depression in	
	Scandinavian wolves	395
18	Demography and Extinction	397
	18.1 Estimation of population size	398
	18.1.1 One-sample	399
	18.1.2 Two-sample: Capture-mark-recapture	399
	18.1.3 Other methods for estimating census population size	401
	18.2 Inbreeding depression and extinction	401
	18.2.1 Evidence that inbreeding depression affects population	
	dynamics	402
	18.2.2 Are small populations doomed?	403
	18.3 Loss of phenotypic variation	404
	18.3.1 Life history variation	404
	18.3.2 Mating types and sex determination	405
	18.3.3 Phenotypic plasticity	406

	18.4 Loss of evolutionary potential	407
	18.5 Mitochondrial DNA	409
	18.6 Mutational meltdown	409
	18.7 Long-term persistence	409
	18.8 The 50/500 rule	411
	18.9 Population viability analysis	411
	18.9.1 Incorporation of inbreeding depression into PVA	412
	18.9.2 Incorporation of evolutionary potential into PVA	416
	18.9.3 What is a viable population?	417
	18.9.4 Are plants different?	419
	18.9.5 Beyond viability	42 1
	18.9.6 Complex models: Multiple species and environmental	
	interactions	421
	Guest Box 18: Lukas F. Keller and Iris Biebach, Inbreeding depression reduces	
	population growth rates in reintroduced alpine ibex	423
19	Population Connectivity	425
	19.1 Metapopulations	426
	19.1.1 Genetic variation in metapopulations	427
	19.1.2 Effective size of a metapopulation	429
	19.2 Landscape genetics	430
	19.2.1 Landscape connectivity and complex models	431
	19.2.2 Corridor mapping	433
	19.2.3 Neutral landscape genomics	433
	19.2.4 Adaptive landscape genomics	436
	19.3 Genetic effects of habitat fragmentation	437
	19.4 Genetic versus demographic connectivity	439
	19.5 Genetic rescue	440
	19.5.1 Evidence for genetic rescue	441
	19.5.2 Call for paradigm shift in use of genetic rescue	442
	19.5.3 Genomics and genetic rescue	445
	19.6 Long-term viability of metapopulations	445
	Guest Box 19: Kyle D. Gustafson and Holly B. Ernest, The eroding genomes	
	of fragmented urban puma populations in California	449
20	Conservation Units	451
	20.1 What are we trying to protect?	452
	20.2 Systematics and taxonomy	455
	20.3 Phylogeny reconstruction	456
	20.3.1 Methods	458
	20.3.2 Gene trees and species trees	458
	20.4 Genetic relationships within species	460
	20.4.1 Population-based approaches	462
	20.4.2 Individual-based approaches	465
	20.4.3 Phylogeography	468
	20.5 Units of conservation	471
	20.5.1 Species	471

	20.5.2 Evolutionarily significant units	474
	20.5.3 Management units	478
	20.6 Integrating genetic, phenotypic, and environmental information	480
	20.6.1 Adaptive genetic variation	481
	20.7 Communities	483
	Guest Box 20: Kenneth K. Askelson, Armando Geraldes, and Darren Irwin,	
	Using genomics to reveal conservation units: The case of Haida Gwaii	
	goshawks	485
21	Conservation Breeding and Restoration	487
	21.1 The role of conservation breeding	488
	21.1.1 When is conservation breeding an appropriate tool for	
	conservation?	489
	21.1.2 Priorities for conservation breeding	490
	21.1.3 Potential dangers of captive propagation	491
	21.2 Reproductive technologies and genome banking	491
	21.3 Founding populations for conservation breeding programs	494
	21.3.1 Source populations	497
	21.3.2 Admixed founding populations	497
	21.3.3 Number of founder individuals	498
	21.4 Genetic drift in captive populations	498
	21.4.1 Minimizing genetic drift	498
	21.4.2 Accumulation of deleterious alleles	499
	21.4.3 Inbreeding or genetic drift?	499
	21.5 Natural selection and adaptation to captivity	500
	21.5.1 Adaptation to captivity	500
	21.5.2 Minimizing adaptation to captivity	501
	21.5.3 Interaction of genetic drift and natural selection	501
	21.6 Genetic management of conservation breeding programs	501
	21.6.1 Pedigreed populations	502
	21.6.2 Nonpedigreed populations	503
	21.7 Supportive breeding	504
	21.7.1 Genetic drift and supportive breeding	505
	21.7.2 Natural selection and supportive breeding	506
	21.8 Reintroductions and translocations	506
	21.8.1 Reintroduction of animals	507
	21.8.2 Restoration of plant communities	509
	Guest Box 21: Robert H. Robichaux, Genetic management and reintroduction	
	of Hawaiian silverswords	511
22	Genetic Identification	512
	22.1 Species identification	513
	22.1.1 DNA barcoding	513
	22.1.2 DNA metabarcoding and metagenomics	515
	22.1.3 Diet analysis	516
	22.1.4 Environmental DNA	516
	22.1.5 Forensic genetics	520

	22.2 Individual identification	524
	22.2.1 Probability of identity	524
	22.2.2 Match probability	526
	22.3 Parentage and relatedness	527
	22.3.1 Parentage	527
	22.3.2 Mating systems and dispersal	528
	22.3.3 Relatedness	529
	22.4 Population assignment and composition analysis	530
	22.4.1 Assignment of individuals	530
	22.4.2 Assignment of groups	534
	22.4.3 Population composition analysis	535
	Guest Box 22: Eleanor E. Dormontt and Andrew J. Lowe, Tracking illegal	
	logging using genomics	538
23	Genetic Monitoring	540
	23.1 Species presence	541
	23.2 Population abundance	542
	23.3 Genetic variation	544
	23.3.1 Changes in genetic variation in declining populations	544
	23.3.2 Changes in genetic variation in response to environmental	
	perturbations	545
	23.3.3 Changes in genetic variation in response to management	
	actions	546
	23.3.4 Meta-analyses of changes in genetic variation	546
	23.4 Effective population size	549
	23.4.1 Estimating effective population size at multiple time points	549
	23.4.2 Inferring changes in effective population size from	
	contemporary samples	550
	23.5 Population subdivision and gene flow	551
	23.6 Adaptive variation	552
	23.7 Integrative genetic monitoring and the future	555
	Guest Box 23: Antoinette Kotzé and J. Paul Grobler, African mammal	
	conservation benefiting from genetic monitoring: The Cape mountain zebra in	
	South Africa	557
24	Conservation Genetics in Practice	558
	24.1 Basic and applied science	558
	24.2 The role of science in the development of policy	559
	24.2.1 The best available science	560
	24.2.2 Advice versus advocacy	560
	24.3 Integrating genetic data into conservation strategy	561
	24.3.1 The conservation genetics gap	561
	24.3.2 What drives the gap and helps it persist?	562
	24.3.3 Bridging the gap	562
	24.3.4 Could genomics widen the gap?	567
	24.3.5 The genetics gap within conservation science	568

24.4 How do I become a conservation geneticist?	568
24.4.1 What is a conservation geneticist?	568
24.4.2 Diverse skill sets	570
24.4.3 Communication and collaboration	571
24.5 The future	572
Guest Box 24: Michael K. Schwartz, Making genetics applicable to managers	573

Glossary

574

Appendi	x Probability, Statistics, and Coding	596
A1	Paradigms	597
A2	Probability	598
	A2.1 Joint and conditional probabilities	599
	A2.2 Odds ratios and LOD scores	599
A3	Statistical measures and distributions	600
	A3.1 Types of statistical descriptors or tests	600
	A3.2 Measures of location and dispersion	601
	A3.3 Probability distributions	602
A4	Frequentist hypothesis testing, statistical errors, and power	606
	A4.1 One- versus two-tailed tests	608
	A4.2 Statistical power	608
	A4.3 Problems with <i>P</i> -values	609
A5	Maximum likelihood	610
A6	Bayesian approaches and Markov chain Monte Carlo	610
	A6.1 Markov chain Monte Carlo (MCMC)	613
A7	Approximate Bayesian Computation (ABC)	614
A8	Parameter estimation, accuracy, and precision	616
A9	Performance evaluation	618
A10	The coalescent and genealogical information	618
A11	Bioinformatics, Linux, and coding	621
A12	Filtering and data quality	624
A13	Why simulations?	626
Gue	st Box A: Mark A. Beaumont and Jo Howard-McCombe, A testable	
mod	el-based perspective for conservation genetics	628
eference	IS	629
ıdex		712

Appendix and References are available only online at www.oup.com/companion/ AllendorfCGP3e

Preface to the Third Edition

I have always loved, and will always love, wild nature: Plants and animals. Places that are still intact. Though others might avoid the word, I insist that we talk about "love" in conservation, because we only protect what we love. (Michael E. Soulé 2018)

The field of conservation genetics has changed dramatically since the second edition of this book was published in 2013. One-third of the references in this edition were written after the publication of the second edition. We have changed the title to reflect the growing and profound influence that genomics has had on applying genetics to problems in conservation. We have witnessed an extraordinary explosion of knowledge of the genetics and genomics of natural populations because genomic approaches have become more affordable and accessible. It has been a real challenge to add the new literature while keeping the book to a reasonable size. To accomplish this, we have put the Appendix and the References online. We understand that this is inconvenient, but we wanted to avoid an unwieldy book. Approximately 10% of the second edition was taken up by the References. The References and Appendix can be downloaded from the following companion website: www.oup.com/companion/AllendorfCGP3e.

We are excited to add Margaret Byrne and Chris Funk as coauthors. The five of us met in Missoula in July 2019 to plan our efforts (see Figure P.1). We have added Chapter 24, which deals with the practical considerations of being a conservation geneticist and applying genetics to problems in conservation. We invited Helen R. Taylor to help write this chapter; she is the primary author of Chapter 24.

This edition was written largely in the midst of the COVID-19 pandemic. Millions of people worldwide

have died from this tragic event. We send our deepest condolences to those who have lost loved ones from this global pandemic. The disease spillover from wildlife to humans is intimately linked to the topic of this book: conservation of biodiversity. This tragedy demonstrates that human health and well-being are inextricably tied to the health and well-being of the natural world. We hope this book furthers biodiversity conservation for the benefit of nature and humans.

Our guiding principle in writing has been to provide the conceptual basis for understanding the genetics of biological problems in conservation. We have not attempted to review the extensive and ever-growing literature in this area. Rather, we have tried to explain the underlying concepts and to provide examples and key citations for further consideration. We also have strived to provide enough background so that students can read and understand the primary literature.

There is a wide variety of computer programs available to analyze genetic and genomic data to estimate parameters of interest. However, the ease of collecting and analyzing data has led to an unfortunate and potentially dangerous reduction in the emphasis on understanding theory in the training of population and conservation geneticists. Understanding theory remains crucial for correctly interpreting outputs from computer programs and statistical analyses. For example, the most powerful

Figure P.1 The authors (left to right: Chris Funk, Margaret Byrne, Sally Aitken, Fred Allendorf, and Gordon Luikart) on the campus of the University of Montana.

software programs that estimate important parameters, such as effective population size (Chapter 7) and gametic disequilibrium (Chapter 10), can be misleading if their assumptions and limitations are not understood. We are still disturbed when we read statements in the literature that the loci studied are not linked because they are not in linkage (gametic) disequilibrium.

We have striven for a balance of theory, empirical examples, and statistical analysis (see Figure P.2). Population genomics provides unprecedented power to understand genetic variation in natural populations. Nevertheless, application of this information requires sound understanding of population genetics theory. To quote Joe Felsenstein: "We have the same situation in population genomics. People have vast amounts of data and do completely half-ass things with it because they don't know any better. And, I wish there was some way of persuading people that we need to train students in the development and properties of the methods. And that means population genetics."

The molecular tools being used by population geneticists continue to change rapidly. It has been difficult to decide which techniques to include in Chapters 3 and 4. We present some techniques that are seldom or no longer used (e.g., allozymes) because they are crucial for understanding much of the previous conservation genetics literature.

We also have included a comprehensive Glossary. Words included in the Glossary are **bolded** the first time they are used in each chapter. Many of the disagreements and long-standing controversies in population and conservation genetics result

Figure P.2 The application of population genetics to understand genetic variation in natural populations relies upon a combination of understanding theory, collecting data, and understanding analysis.

from people using the same words to mean different things. It is important to define and use words precisely.

Many of our colleagues have written Guest Boxes that present their own work in conservation genetics. Each chapter contains a Guest Box that provides further consideration of the topics from that chapter. These boxes provide the reader with broader voices in conservation genetics from some of the major contributors to the literature in conservation genetics from around the world.

We have lost some special colleagues since the publication of the second edition. We have dedicated this edition to Michel Soulé, who co-authored a Guest Box in the first two editions of this book. We were saddened to learn that Elaina Tuttle, who wrote a Guest Box in the previous edition, passed away in 2016. Fred's good friend and colleague Ian Jamieson passed away in 2015. Ian had an important influence on Fred's understanding of genetic load (Box 17.1), population viability, and rugby.

> Fred W. Allendorf W. Chris Funk Sally N. Aitken Margaret Byrne Gordon Luikart 12 February 2021

Acknowledgments

We are grateful to Ian Sherman, Charlie Bath, and the staff of Oxford University Press for their help in producing this edition. FWA is especially grateful to Ian for his friendship and encouragement over the past eight years.

FWA thanks Diane Haddon for her love, humor, and color vision. WCF would like to thank his wife, Victoria Funk, for her patience and loving support, and his parents, Sue and Bill Funk, for fostering his love of nature and learning. SNA thanks Jack Woods for his endless patience, love, and conversations about topics in this book. She also thanks members of her research group for inspiration and input. MB thanks her family for their support, particularly during weekends of writing and reviewing, and many colleagues for ongoing inspiration in making a difference for conservation of biodiversity. GL thanks his children, Braydon and Madyson, and parents, Nancy and Ed Luikart, for their love and support of his passion for conservation, genetics, and education.

We give special thanks to the following people and organizations for their help: Minitab LLC, for providing statistical software through their Author Support Program; Leif Howard, for help with permissions and much more; Nina Andrascik, for help with the Glossary; John Ashley, Mark Ravinet, Glenn-Peter Sætre, and Diane Whited, for help with figures. Nils Ryman, for his helpful comments on the Appendix; Paul Sunnucks, for his many helpful comments on the first edition of this book; and the following members of the Great Lakes Genetic/Genomic Laboratory, for their detailed comments on the second edition of this book: Amanda Haponski, Carson Pritchard, Matthew Snyder, Shane Yerga-Woolwine, and Carol Stepien.

We thank the following colleagues, friends, and family members who have helped us by providing comments, information, unpublished data, figures, and answers to questions: Darren Abbey, Kea Allendorf, Teri Allendorf, Paulo Alves, Steve Amish, Eric Anderson, Mike Arnold, Jon Ballou, Mark Beaumont, Peter Beerli, Albano Beja-Pereira, Donovan Bell, Steve Beissinger, Kurt Benirschke, Laura Benestan, Louis Bernatchez, Olly Berry, Pierre Berthier, Giorgio Bertorelle, Matt Boyer, Brian Bowen, Jason Bragg, Ron Burton, Chris Cole, Graham Coop, Des Cooper, Rob Cowie, Kirsten Dale, Charlie Daugherty, Sandy Degnan, Pam Diggle, Holly Doremus, Sylvain Dubey, Dawson Dunning, Suzanne Edmands, Norm Ellstrand, Joe Felsenstein, Sarah Fitzpatrick, Brenna Forester, Zac Forsman, Frode Fossøy, Dick Frankham, Ned Friedman, Oscar Gaggiotti, Neil Gemmell, Cameron Ghalambor, John Gillespie, Mary Jo Godt, Dave Goulson, Peter Grant, Noah Greenwald, Ed Guerrant, Brian Hand, Vincent Hanlon, Bengt Hansson, Sue Haig, Kim Hastings, Roxanne Haverkort, Phil Hedrick, Jon Herron, Jon Hess, Kelly Hildner, Rod Hitchmough, Paul Hohenlohe, Denver Holt, Nora Hope, Jeff Hutchings, Brett Ingram, Mike Ivie, Dan Jergens, Mike Johnson, Rebecca Johnson, Rebecca Jordan, Carrie Kappel, Marty Kardos, Kenneth Kidd, Joshua Kohn, Arnie Kotler, Antoinette Kotzé, Siegy Krauss, Bob Lacy, Wes Larson, Pete Lesica, Paul Lewis, Meng-Hua Li, Morten Limborg, Brandon Lind, Curt Lively, Winsor Lowe, Laura Lundquist, Shu-Jin Luo, John McCutcheon, Ian MacLachlan, Siera McLane, Lisa Meffert, Juha Merilä, Don Merton, Mike Miller, Scott Mills, Steve Mussmann, Shawn Narum, Maile Neel, Jeremy Nigon, Rob Ogden, Kathleen O'Malley, Gordon Orians, Sally Otto, Andy Overall, Jim Patton, Bret Payseur, Rod Peakall, Jill Pecon-Slattery, Eleni Petrou, Robert Pitman, Craig Primmer, Reg Reisenbichler, Bruce Rieman, Pete Ritchie, Bruce Rittenhouse, Bruce Robertson, Rob Robichaux, Marina Rodriguez, Rafael Ribeiro, Beth Roskilly, Norah Saarman, Mike Schwartz, Jim Seeb, Brad Shaffer, Pedro Silva, Stephen Smith, Pia Smets, Doug Soltis, Pam Soltis, Paul Spruell, Dave Tallmon, Mark Tanaka, Barb Taylor, Dave Towns, Kathy Traylor-Holzer, Daryl Trumbo, Hayley Tumas, Susannah Tysor, Dragana Obrecht Vidacovic, Randal Voss, Hartmut Walter, Robin Waples, Tongli Wang, John Wenburg, Andrew Whiteley, Mike Whitlock, Jeannette Whitton, Briana Whitaker, Jack Woods, and Sam Yeaman.

Guest Box Authors

- Helen R. Taylor Royal Zoological Society of Scotland, Edinburgh, Scotland, UK (helentaylor23 @gmail.com). Primary author of Chapter 24.
- Kenneth K. Askelson Biodiversity Research Centre, and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada (askelson@zoology.ubc.ca). Chapter 20.
- Rachael A. Bay Department of Evolution and Ecology, University of California Davis, Davis, California, USA (rbay@ucdavis.edu). Chapter 16.
- Mark A. Beaumont School of Biological Sciences, University of Bristol, Bristol, UK (m.beaumont@bristol.ac.uk). Appendix.
- **Oliver F. Berry** Environomics Future Science Platform, The Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia (oliver.berry@csiro.au). Chapter 13.

Iris Biebach Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland (iris.biebach@ieu.uzh.ch). Chapter 18.

Shane C. Campbell-Staton Department of Ecology and Evolutionary Biology and Institute for Society and Genetics, University of California Los Angeles, Los Angeles, California, USA (scampbellstaton@princeton.edu). Chapter 8.

James F. Crow Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA. Deceased (1916–2012). Chapter 5.

Janine E. Deakin Institute for Applied Ecology, University of Canberra, Canberra, Australia (janine.deakin@canberra.edu.au). Chapter 3.

- **Eleanor E. Dormontt** School of Biological Sciences, The University of Adelaide, Adelaide, Australia (eleanor.dormontt@adelaide.edu.au). Chapter 22.
- Nicolas Dussex Centre for Palaeogenetics and Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden (nicolas.dussex@gmail.com). Chapter 6.
- Holly B. Ernest Wildlife Genomics and Disease Ecology Lab, University of Wyoming, Laramie, Wyoming, USA (holly.ernest@uwyo.edu). Chapter 19.
- **Peter J.S. Fleming** Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales, Australia (peter.fleming@dpi.nsw.gov.au). Chapter 13.
- Yasmin Foster Department of Zoology, University of Otago, Dunedin, New Zealand (y.al.foster@gmail.com). Chapter 6.
- **Armando Geraldes** Biodiversity Research Centre and Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia, Canada (geraldes@mail.ubc.ca). Chapter 20.
- J. Paul Grobler Genetics Department, University of the Free State, Bloemfontein, South Africa (groblerjp@ufs.ac.za). Chapter 23.
- **Kyle D. Gustafson** Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA (kgustafson@astate.edu). Chapter 19.
- **Philip W. Hedrick** School of Life Sciences, Arizona State University, Tempe, Arizona, USA (philip.hedrick@asu.edu). Chapter 12.
- **Paul A. Hohenlohe** Department of Biological Sciences, Institute for Bioinformatics and

Evolutionary Studies, University of Idaho, Moscow, Idaho, USA (hohenlohe@uidaho.edu). Chapter 4.

Jo Howard-McCombe School of Biological Sciences, University of Bristol, Bristol, UK (j.howard-mccombe@bristol.ac.uk). Appendix.

Darren Irwin Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada (irwin@zoology.ubc.ca). Chapter 20.

Marty Kardos Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, USA.(martin.kardos@noaa.gov). Chapter 17.

Lukas F. Keller Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland (lukas.keller@ieu.uzh.ch). Chapter 18.

Antoinette Kotzé Foundational Research and Services, South African National Biodiversity Institute, Pretoria, South Africa (A.Kotze@sanbi.org.za). Chapter 23.

Linda Laikre Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden (linda.laikre@popgen.su.se). Chapter 7.

Andrew J. Lowe School of Biological Sciences, The University of Adelaide, Adelaide, Australia (andrew.lowe@adelaide.edu.au). Chapter 22.

Juha Merilä Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland, and Research Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR (merila@hku.hk). Chapter 15.

Paolo Momigliano Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland (Paolo.momigliano@helsinki.fi). Chapter 15.

Sarah P. Otto Biodiversity Research Center, University of British Columbia, Vancouver, British Columbia, Canada (otto@zoology.ubc.ca). Chapter 1.

Sally Potter Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia and Research School of Biology, Australian National University, Acton, Australia (sally.potter@anu.edu.au). Chapter 3.

Uma Ramakrishnan National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India (uramakri@ncbs.res.in). Chapter 9.

Bruce C. Robertson Department of Zoology, University of Otago, Dunedin, New Zealand (bruce.robertson@otago.ac.nz). Chapter 6.

Robert H. Robichaux Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA (robichau@email.arizona.edu). Chapter 21.

Lee A. Rollins Evolution and Ecology Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales. Sydney, New South Wales, Australia (l.rollins@unsw.edu.au). Chapter 14.

Nils Ryman Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden (nils.ryman@popgen.su.se). Chapter 7.

Michael K. Schwartz USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Missoula Montana, USA (Michael.k.schwartz@usda.gov). Chapter 24.

Richard Shine Department of Biological Sciences, Macquarie University, New South Wales, Australia (rick.shine@mq.edu.au). Chapter 14.

Victoria L. Sork Department of Ecology and Evolutionary Biology and Institute of Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA (vlsork@ucla.edu). Chapter 11.

Danielle Stephens Zoological Genetics, Inglewood, South Australia, Australia (stephens@zoolgenetics.com). Chapter 13.

Robin S. Waples Northwest Fisheries Science Center, Seattle, Washington, USA (Robin.Waples@noaa.gov). Chapter 10.

Kelly R. Zamudio Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Cornell University, Ithaca, New York, USA (krz2@cornell.edu). Chapter 2.

List of Symbols

This list includes mathematical symbols with definitions and references to the primary chapters in which they are used. There is quite a bit of duplication, which reflects the general usage in

the population genetics literature. However, the specific meaning should be apparent from the context and chapter.

Symbol	Definition	Chapter
Latin Symbols		
\hat{x}	estimate of parameter <i>x</i>	Appendix (A)
Α	number of alleles at a locus	3, 4, 5, 6
В	the number of lethal equivalents per gamete	17
$CV_{\rm A}$	additive coefficient of variation	11
D	Jost's measure of differentiation	9
D	Nei's genetic distance	9,20
D	coefficient of gametic disequilibrium	10, 13
$D^{'}$	standardized measure of gametic disequilibrium	10
D_{B}	gametic disequilibrium caused by population subdivision	10
$D_{\rm C}$	composite measure of gametic disequilibrium	10
Ε	probability of an event	А
e^2	environmental effect in heritability	11
eμ	evolvability; the proportional change expected in a trait mean	11
	value under a unit strength of selection	
f	inbreeding coefficient	6
F	realized proportion of genome that is identical by descent	17
F_{ij}	coefficient of coancestry	9
F _{IS}	departure from Hardy-Weinberg proportions within local demes	5, 6, 9, 11, 17,
	or subpopulations	А
$F_{\rm IT}$	overall departure from Hardy–Weinberg proportions	9
$F_{\mathbf{k}}$	temporal variance in allele frequencies	А
$F_{\rm P}$	pedigree inbreeding coefficient	6, 17, A
$F_{\rm SR}$	proportion of the total differentiation due to differences among subpopulations within regions	9
F _{ROH}	proportion of the genome that is IBD as estimated by runs of homozygosity	17

Symbol	Definition	Chapter
F _{ST}	proportion of genetic variation due to differences among populations	3, 9, 12, 13, 14, 19, 21, A
F2 _{ST}	$F_{\rm ST}$ value using the frequency of the most common allele and all other allele frequencies binned together	9
G	generation interval	7, 15, 21
G _{ST}	$F_{\rm ST}$ extended for three or more alleles	9
G'st	standardized measure of $G_{\rm ST}$	9
h	gene diversity, computationally equivalent to $H_{\rm e}$, especially useful for haploid marker systems	3,7
h	degree of dominance of an allele	12
h	heterozygosity	6,7
h^2	narrow sense heritability/proportion of phenotypic variance due to genotypic value	11
H _A	alternative hypothesis	А
$H_{\rm B}$	broad sense heritability	11
$H_{\rm e}$	expected proportion of heterozygotes	3, 5, 6, 7, 9, 14, 19, 22, A
H_{0}	observed heterozygosity	3, 6, 9, A
H ₀	null hypothesis	A
$H_{\rm N}$	narrow sense heritability	11, 15, 18, 21
$H_{\rm S}$	mean expected heterozygosity	3, 9, 12, 19
H_{T}	total genetic variation	9, 12, 14, 19
Κ	carrying capacity	6, 18
k	number of gametes contributed by an individual to the next generation	7
k	number of populations	20, A
L	number of loci	17
т	proportion of migrants	9, 19, 20, 21
mk	mean kinship	22
mN	number of migrants per generation	9
MP	match probability	22
Ν	population size	5, 6, 7, 9, 12, A
n	sample size	3, A
п	ploidy level	3
$N_{\rm b}$	number of breeders per reproductive cycle	7,23
N _C	census population size	7, 15, 18, 23, A
$N_{\rm C}$	proportion of individuals that reproduce in captivity	21
N _W	proportion of individuals that reproduce in the wild	21
$N_{ m e}$	effective population size	4, 7, 8, 9, 10, 11, 12, 15,18,
$N_{ m eI}$	inbreeding effective population size	21, 23, A 7
$N_{\rm eV}$	variance effective population size	7
$N_{ m f}$	number of females in a population	6,7,9
$N_{\rm m}$	number of males in a population	6,7,9
NS	Wright's neighborhood size	9
Р	proportion of loci that are polymorphic	3, 5
Р	probability of an event	5, A

Symbol	Definition	Chapter
р	frequency of allele A_1 (or A)	5, 6, 8, 9, 11
р	proportion of patches occupied in a metapopulation	19
PE	probability of paternity exclusion; average probability of excluding	22
	(as father) a randomly sampled nonfather	
Play	average probability of identity	22, 23
1	frequency of allele A_2 (or <i>a</i>)	5, 6, 8, 9, 11
2	probability two alleles are identical in state	9
2	probability of an individual's genotype originating from each	20
Q _{ST}	proportion of total genetic variation for a phenotypic trait due to genetic differentiation among populations (analogous to F_{ST})	11
	frequency of allele A_3	5
	correlation coefficient	А
	rate of recombination	4,10
	intrinsic population growth rate	6, 18
•	correlation between two traits	11
2	correlation coefficient between alleles at two loci	10
2	response to selection	11, 15
2	number of recaptured individuals	18
2	rate of adaptation to captivity	21
2(0)	allelic richness in a sample of α genes	5.23
-067 Сст	analog to $F_{\rm ST}$ that accounts for differences length of microsatellite alleles	9,20
-51	self-incompatibility locus	8,18
	selection differential	11.15.21
	effects of inbreeding on the probability of survival	17
	selfing rate	9
	selection coefficient (intensity of selection)	8.9
	standard doviation	Δ
x 2	sample veriance	A
x	sample variance	A
7	number of generations	0
′ A	between individuals	11, 12, 18
D	proportion of phenotypic variability due to dominance effects (interactions between alleles)	11
/ _E	proportion of phenotypic variability due to environmental differences between individuals	2, 11, 18
/ _G	proportion of phenotypic variability due to genetic differences between individuals	2, 11
/ _I	proportion of phenotypic variability due to epistatic effects	11
/k	variance of the number of offspring contributed to the next generation	7
/m	increase in additive genetic variation per generation due to mutation	12, 18
⁷ p	total phenotypic variability for a trait	2, 11
\overline{I}_{a}	binomial sampling variance	6
Ń	absolute fitness	8, 11
11	relative fitness	8 11

Symbol	Definition	Chapter
Greek Symbols		
α	probability of a false positive (Type I) error	А
β	probability of a false negative (Type II error)	А
Δ	change in value from one generation to the next	6,7,8
δ	proportional reduction in fitness due to selfing	17
θ	population scaled mutation rate	12
λ	factor by which population size increases each time unit	18, 19
μ	population mean	А
μ	neutral mutation rate	12
π	nucleotide diversity	3,5
π	probability of an event	А
σ_x^2	population variance	А
Φ_{ST}	analogous to $F_{\rm ST}$ but incorporates genealogical	9
	relationships among alleles	
X^2	chi-square statistic	А
Other Symbols		
x	number of observations or times that an event occurs	А
\bar{x}	sample mean	А
\bar{x}^2	sample variance (second moment)	А
\bar{x}^3	skewness of sample distribution (third moment)	А

List of Abbreviations

ABC	approximate Bayesian computation
AFLP	amplified fragment length polymorphism
AMOVA	analysis of molecular variance
ANOVA	analysis of variance
BAMBI	Baltic Sea Marine Biodiversity
Bd	Batrachochytrium dendrobatidis
BIC	Bayesian Information Criterion
BLAST	Basic Local Alignment Search Tool
BLUP	best linear unbiased prediction
BOLD	Barcode of Life Data Systems
bp	base pair
BSC	biological species concept
CBD	Convention on Biological Diversity
CBOL	Consortium for the Barcode of Life
cDNA	complementary DNA
CITES	Convention on International Trade in
	Endangered Species of Wild Fauna and
	Flora
CKMR	close-kin mark-recapture
cM	centimorgan
CMS	cytoplasmic male sterility
CMR	capture-mark-recapture
cpDNA	chloroplast DNA
CPSG	Conservation Planning Specialist Group
CRISPR	clustered regularly interspaced short
	palindromic repeats
CTSG	Conservation Translocation Specialist
	Group
CU	conservation unit
CWD	chronic wasting disease
DAPC	discriminant analysis of principal
	components
ddRAD	double digest RAD
df	degrees of freedom
DFTD	devil facial tumor disease
DNA	deoxyribonucleic acid
DPS	distinct population segment
DDT	dichlorodiphenyltrichloroethane

Meaning

Abbreviation

eDNA	environmental DNA			
EM	expectation maximization			
EST	expressed sequence tag			
EPBC Act	Australian Environment Protection and			
	Biodiversity Conservation Act 1999			
ESA	United States Endangered Species Act			
ESU	evolutionarily significant unit			
FAO	Food and Agriculture Organization of the			
	United Nations			
FCA	frequency correspondence analysis			
FIE	fisheries induced evolution			
Gb	gigabase			
GBS	genotyping-by-sequencing			
GCM	global climate model			
GEA	genotype–environment association			
GEBV	genomic-estimated breeding value			
GEOBON	Group on Earth Observations Biodiversity			
	Observation Networks			
GD	gametic disequilibrium			
GO	gene ontology			
GWAS	genome-wide association study			
HDFW	Hawai'i Division of Forestry and Wildlife			
HFC	heterozygosity-fitness correlation			
HIV	human immunodeficiency virus			
HW	Hardy–Weinberg			
IAM	infinite allele model			
IBD	identical by descent			
iBOL	International Barcode of Life Initiative			
ICES	International Council for the Exploration			
	of the Sea			
IPCC	Intergovernmental Panel on Climate			
	Change			
IPBES	Intergovernmental Science-Policy			
	Platform on Biodiversity and Ecosystem			
	Services			
ISSR	inter-simple sequence repeat			
ITS	internal transcribed spacer			
IUCN	International Union for Conservation of			
	Nature			
LD	linkage disequilibrium			

LDE	language development enzyme	PVA	population viability analysis
LE	lethal equivalent	qPCR	quantitative polymerase chain reaction
LOD	log of odds ratio	QTL	quantitative trait locus
LoF	loss of function	RADs	restriction site-associated DNA markers
MAC	minor allele count	RADseq	restriction site-associated DNA
MAF	minor allele frequency	-	sequencing
Mb	megabase pairs, equal to million base pairs	RAPD	randomly amplified polymorphic DNA
MCMC	Markov chain Monte Carlo	RCP	representative concentration pathway
MDS	multidimensional scaling	RDA	redundancy analysis
MHC	major histocompatibility complex	rDNA	ribosomal DNA
ML	maximum likelihood	REML	restricted maximum likelihood
MLE	maximum likelihood estimate	RFLP	restriction fragment length polymorphism
MMPA	US Marine Mammal Protection Act	RIL	recombinant inbred line
MOU	memorandum of understanding	RNA	ribonucleic acid
MP	match probability	ROH	runs of homozygosity
MRCA	most recent common ancestor	RONA	risk of nonadaptedness
MSMC	multiple sequentially Markovian	RRV	raccoon rabies virus
	coalescent	RZSS	Roval Zoological Society of Scotland
mRNA	messenger RNA	SARA	Species at Risk Act of Canada
mtDNA	mitochondrial DNA	SDM	species distribution model
MU	management unit	siRNA	small interfering RNA
MVP	minimum viable population	SES	site frequency spectrum
ΜΥΔ	million years ago	SCS	spatial genetic structure
NCA	nested clade analysis	SIRNA	small interforing RNA
NCDE	Northorn Continental Divide Ecosystem	SIMM	stopwise mutation model
NCDL	northern Continental Divide Ecosystem	SIVILVI	single nucleotide polymorphism
NEMBA	Courth African National Environmental	SINF	
INEIVIDA	South African National Environmental	SSK	simple sequence repeat
NICC	Management: blociversity Act	51K T	Short tandem repeat
NGS	next-generation sequencing	Iaq	DNA polymerase enzyme from <i>1 nermus</i>
NGO	nongovernment organization		aquaticus
NOAA	US National Oceanic and Atmospheric	IMRCA	time to most recent common ancestor
	Administration	UNDRIP	UN Declaration on the Rights of
OTU	operational taxonomic unit		Indigenous Peoples
PAW	Partnership for Action Against Wildlife Crime	UPGMA	unweighted pair group method with arithmetic averages
PCA	principal component analysis	US	United States
PCoA	principal coordinates analysis	USA	United States of America
PCR	polymerase chain reaction	USDA	US Department of Agriculture
PDF	probability density function	USFS	US Forest Service
PE	probability of paternity exclusion	USFWS	US Fish and Wildlife Service
PHR	Pearl and Hermes Reef	VNTR	variable number tandem repeat
PI	probability of identity	VSA	verified subspecies ancestry
PMRN	probabilistic maturation reaction norm	WNS	white-nose syndrome
PSC	phylogenetic species concept	WWF	World Wide Fund for Nature
PSMC	pairwise sequentially Markovian	YSE	Yellowstone Ecosystem
	coalescent		5

PART I

Introduction

Introduction

The extinction of species, each one a pilgrim of four billion years of evolution, is an irreversible loss. The ending of the lines of so many creatures with whom we have traveled this far is an occasion of profound sorrow and grief. Death can be accepted and to some degree transformed. But the loss of lineages and all their future young is not something to accept. It must be rigorously and intelligently resisted.

(Gary Snyder 1990, p. 176)

The key for conservation genomics will be for the academic and policy spheres to communicate in an effort to maintain a firm grasp on conceptual advances (driven by academic research) and on-site conservation needs (recognized by practitioners).

(Aaron B.A. Shafer et al. 2015, p. 85)

We are living in a time of unprecedented extinctions (Dirzo et al. 2014; Pimm et al. 2014; Humphreys et al. 2019). Current extinction rates have been estimated to be 1,000 times background rates and are increasing (Pimm et al. 2014). Approximately 25% of mammals, 14% of birds, 42% of turtles and tortoises, 40% of amphibians, 34% of conifers, and 35% of selected dicot plant taxa are threatened with extinction (IUCN 2019). Most of these extinction risk projections are based primarily on population declines owing to habitat loss, overharvesting, and pollution. For example, the Christmas Island pipistrelle bat was declared extinct by the International Union for Conservation of Nature (IUCN) in 2017 (Example 1.1). Climate change is anticipated to further increase extinction risks for many species (Urban 2015).

The true picture is likely much worse than this because the conservation status of most of the

world's species remains poorly known. In addition, estimates indicate that less than 30% of the world's arthropod species have been described (Hamilton et al. 2010). Only ~6% of the world's described species have been evaluated for the IUCN Red List (Table 1a in IUCN 2019). Few invertebrate species (2%) have been evaluated, and the evaluations that have been done have tended to focus on mollusks and crustaceans. Among the insects, only the swallowtail butterflies, dragonflies, and damselflies have received much attention. A recent analysis has concluded that the number of extinctions of seed plants is more than four times that on the Red List (Humphreys et al. 2019).

Protecting biodiversity poses perhaps the most difficult and important questions ever faced by science (Pimm et al. 2001). The problems are difficult because they are so complex and cannot be approached by the reductionist methods that have

Example 1.1 Extinction

The nighttime forests of Christmas Island in the Indian Ocean fell silent in 2009 when the last Christmas Island pipistrelle, an echolocating bat, was no longer detected with ultrasound recording devices (Matacic 2017). This species was common until the 1980s, but surveys in the 1990s revealed a drastic decline of unknown cause (Martin et al. 2012). A survey in early 2009 indicated that some 20 bats remained. An attempt to capture these animals for a captive breeding program failed. The last bat evaded capture and was no longer detected with recording devices after 27 August that year. The Christmas Island pipistrelle was officially designated as extinct in 2017 by the IUCN (Matacic 2017).

worked so well in other areas of science. Moreover, solutions to these problems require a major readjustment of our social and political systems. An analysis of progress toward international biodiversity targets has concluded that efforts will not result in an improved state for biodiversity in the near future (Tittensor et al. 2014). Biodiversity conservation is arguably the greatest scientific and social challenge currently faced by humanity because biodiversity loss threatens the continued existence of our species and the future of the biosphere itself.

Genetics and genomics have an important role to play in the protection of biodiversity. The earliest applications of genetics to conservation began in the early 1980s at the very beginning of conservation biology (Soulé & Wilcox 1980). "Genomic" techniques revolutionized the use of genetics in conservation beginning around 2010 (Allendorf et al. 2010). Applications of genomics to conservation require a fundamental understanding of the theory of population genetics, as well as application of the latest techniques. We have strived to accomplish this goal in this work.

1.1 Genetics and civilization

Genetics has a long history of application to improve human well-being, but also to suppress and discriminate against people (Box 1.1). The domestication of animals and cultivation of plants is thought to have been the key step in the development of civilization (Diamond 1997). Early peoples directed genetic change in domestic and agricultural species to suit their needs. It has been estimated that the dog was domesticated some 35,000 years ago (Skoglund et al. 2015), followed by goats and sheep around 10,000 years ago (Darlington 1969; Zeder 2008). Wheat and barley were the first crops to be domesticated in the eastern hemisphere ~10,000 years ago; beans, squash, and maize were domesticated in the western hemisphere at about the same time (Kingsbury 2009).

The initial genetic changes brought about by cultivation and domestication were not due to intentional selection but apparently were inadvertent and inherent in cultivation itself. Genetic change under domestication was later accelerated by thousands of years of purposeful selection as animals and crops were selected to be more productive or to be used for new purposes. This process became formalized in the discipline of agricultural genetics after the rediscovery of Mendel's principles at the beginning of the 20th century.

The "success" of these efforts can be seen everywhere. Humans have transformed much of the landscape of our planet into croplands and pasture to support the over 7 billion humans alive today. It has been estimated that 35% of the Earth's icefree land surface is now occupied by crops and pasture (Foley et al. 2007), and that 24% of the primary terrestrial productivity is used by humans (Haberl et al. 2007). Recently, we have begun to understand the cost at which this success has been achieved. The replacement of wilderness by humanexploited environments is causing the rapidly accelerating loss of species and ecosystems throughout the world. The continued growth of the human population and its direct and indirect effects on environments imperils a large proportion of the wild species that now remain.

Aldo Leopold inspired a generation of ecologists to recognize that the actions of humans are embedded into an ecological network that should not be ignored (Meine 1998):

A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise.

Box 1.1 Eugenics: The dark origins of population genetics and conservation

As conservation geneticists, we recognize the importance of genetic diversity in maintaining healthy natural populations, and in facilitating adaptation to new environmental conditions and challenges. However, both population genetics and the American conservation movement have their roots in the human eugenics movement of a century ago, which viewed genetic diversity among human populations as grounds for discrimination and prejudice. We acknowledge this unfortunate part of the history of both population genetics and conservation, and denounce how it has been used to suppress and disadvantage people.

Many of the early statistical methods that still underlie genetic analysis were developed by devout eugenicists. Francis Galton, a cousin of Charles Darwin, coined the term eugenics in 1883 (Galton 1883, p. 24). Simply put, the field of eugenics viewed human traits as the product of genes, some trait variants more valuable than others, and therefore some human races as better than others (Rohlfs 2020). Galton also developed the concept of linear regression analysis, initially termed "reversion to the mean" or "reversion to mediocrity," which remains widely used in analysis of data of many types. Ronald A. Fisher, who was one of the founders of population genetics, and who developed the

The organized actions of humans are controlled by sociopolitical systems that operate into the future on a timescale of a few years at most (e.g., the next election). All too often our systems of conservation are based on the economic interests of humans in the immediate future. We tend to disregard, and often mistreat, elements that lack immediate economic value but that are essential to the stability of the ecosystems upon which our lives and the future of our children depend.

In 1974, Otto Frankel published a landmark paper entitled "Genetic conservation: our evolutionary responsibility," which set out conservation priorities:

First, ... we should get to know much more about the structure and dynamics of natural populations and communities. ... Second, even now the geneticist can play a part in injecting genetic considerations into the planning of reserves of any kind. ... Finally, reinforcing the grounds for nature conservation with an evolutionary perspective statistical method analysis of variance, was also a staunch eugenicist. Much of *The Genetical Theory of Natural Selection* (Fisher 1930) was devoted to Fisher's concern with the genetic effects of the lower fertility of the English upper class. US President Theodore Roosevelt and his conservation chief Gifford Pinchot, considered fathers of the conservation movement in their country, were both part of the eugenics movement (Wohlforth 2010). The racism that exists in many societies and affects the daily lives of people of color has historical connections to eugenics.

The fields of population genetics and conservations have fortunately progressed a great deal in the past century away from this past. However, they still suffer from the low ethnic and racial diversity typical of ecology and evolutionary biology more broadly (e.g., Graves 2019). The field of conservation genetics will improve further as the diversity of scientists in this field increases, and members of under-represented groups are welcomed warmly and equitably into the community of research and practice. Just as genetic diversity increases the resilience and adaptability of plant and animal populations, the diversity of people in this field will bring new ideas and practices for conserving biodiversity.

may help to give conservation a permanence which a utilitarian, and even an ecological grounding, fail to provide in men's minds.

(Frankel 1974, p. 63)

Frankel, an agricultural plant geneticist, came to similar conclusions to Leopold, a wildlife biologist, by a very different path. In Frankel's view, we cannot anticipate the future world in which humans will live in a century or two. Therefore, it is our responsibility to "keep evolutionary options open." It is crucial to apply our understanding of genetics and evolution to conserving the natural ecosystems that are threatened by human civilization (Cook & Sgrò 2018).

1.2 Genetics, genomics, and conservation

Darwin (1896, p. 99) was the first to consider the importance of genetics and evolution in the persistence of natural populations. He expressed concern

that deer in British nature parks may be subject to loss of vigor because of their small population size and isolation. Voipio (1950) presented the first comprehensive consideration of the application of population genetics to the management of natural populations. He was primarily concerned with the effects of **genetic drift** (Chapter 6) in game populations that were reduced in size by trapping or hunting and fragmented by habitat loss.

The modern concern for genetics in conservation began in the 1970s when Frankel (1970, 1974) began to raise the alarm about the loss of primitive crop varieties and their replacement by genetically uniform cultivars. It is not surprising that these initial considerations of conservation genetics dealt with species that were used directly as resources by humans. Seventy-five percent of crop diversity was lost between 1900 and 2000, and only a few livestock breeds now dominate among domesticated farm animals (FAO 2010). Conserving the genetic resources of wild relatives of agricultural species remains an important area of conservation genetics (Hanotte et al. 2010). For example, the commercial production of sugarcane was saved by the use of germplasm from wild relatives (Soltis & Soltis 2019). However, diversity of crop wild relatives is poorly represented in gene banks (Castañeda-Álvarez et al. 2016). At the same time, geneticists are seeking stress-related genes from wild progenitors of some crops to assist in breeding efforts for new climates (Warschefsky et al. 2014).

The application of genetics and evolution to conservation in a more general context did not blossom until around 1980, when three books established the foundation for applying the principles of genetics and evolution to conservation of biodiversity (Soulé & Wilcox 1980; Frankel & Soulé 1981; Schonewald-Cox et al. 1983). Today conservation genetics is a well-established discipline, with its own journals (e.g., *Conservation Genetics* and *Conservation Genetics Resources*) and two textbooks, including this one and Frankham et al. (2010).

The subject matter of papers published on conservation genetics is extremely broad. However, most articles dealing with conservation and genetics fit into one of the five general categories below:

- Management and reintroduction of captive populations, and the restoration of biological communities.
- Description and identification of individuals, genetic population structure, kin relationships, and taxonomic relationships.
- Detection and prediction of the effects of habitat loss, fragmentation, isolation, and genetic rescue.
- Detection and prediction of the effects of hybridization and introgression.
- Understanding the relationships between fitness of individuals or local adaptation of populations and environmental factors.

These topics are listed in order of increasing complexity and decreasing uniformity of agreement among conservation geneticists. Although the appropriateness of captive breeding in conservation has been controversial, procedures for genetic management of captive populations are well developed with relatively little controversy. The relationship between specific genotypes and fitness or adaptation has been a particularly vexing issue in evolutionary and conservation genetics, but new genomic methods have made this more tractable to study. Many recent studies have shown that natural selection can bring about rapid genetic changes in populations that may have important implications for conservation (Homola et al. 2019).

As in other areas of genetics, model organisms have played an important research role in conservation genetics (Frankham 1999). Many important theoretical issues in conservation biology cannot be answered by empirical research on threatened species (e.g., how much gene flow is required to prevent the inbreeding effects of small population size?). Such empirical questions are often best resolved in species that can be raised in captivity in large numbers with a rapid generation interval (e.g., the fruit fly Drosophila, the guppy, deer mouse, and the fruit fly analog in plants, Arabidopsis thaliana). Such laboratory investigations can also provide excellent training opportunities for students. We have tried to provide examples from both model and threatened species. Where possible we have chosen examples from threatened species or wild populations, even though many of

the principles were first demonstrated with model species.

1.2.1 Using genetics to understand basic biology

Molecular genetic descriptions of individuals are also used to understand the basic biology of populations. For example, genetic information can provide valuable insight into the demographic structure of populations (Escudero et al. 2003; Palsbøll et al. 2007). The total population size can be estimated from the number of unique genotypes sampled in a population for species that are difficult to census (Luikart et al. 2010). Moreover, many demographic models assume a single randomly mating population. The distribution of genetic variation over a species range can be used to identify what geographic units can be considered separate demographic units. Consider a population of trout found within a single small lake that might appear to be a demographic unit (Example 9.2). Under some circumstances these trout could actually represent two or more separate reproductive (and demographic) groups with little or no exchange between them (e.g., Ryman et al. 1979).

Genetic analysis can also be used to detect cryptic effects of climate change on the distribution of species. A massive heatwave affected many marine species along the coast of Western Australia in 2011 (Gurgel et al. 2020). The amount of underwater forest cover of two forest-forming seaweeds quickly recovered so that there was no apparent effect of the heatwave. However, genetic analysis of both species before and after the extreme event indicated substantial loss of genetic diversity of both species. Thus, this marine heatwave resulted in a massive and cryptic loss of genetic diversity that may compromise their ability to respond to future environmental change.

Molecular genotyping can also be used to verify the presence of rare species (Chapter 22). For example, wolverines had not been seen in the state of California since 1922 (Moriarty et al. 2009). When photographic evidence suggested the presence of a wolverine in the Sierra Nevada Mountains in 2008, genetic analysis of scat and hair confirmed its presence. In addition, the comparison of the genotype of this individual with samples throughout the west indicated that this individual most likely originated in the Sawtooth Mountains of Idaho, nearly 600 km away.

Genetic analysis has also been used to document some other amazing animal journeys. A cougar originating from the Black Hills of South Dakota left its genetic fingerprints across northern North America from South Dakota to Minnesota to Wisconsin to New York (Hawley et al. 2016). Finally, a cougar killed by a vehicle in Connecticut turned out to be this same animal that had traveled over 2,400 km!

1.2.2 Invasive species and pathogens

Invasive species are recognized as one of the top two threats to global biodiversity (Chapter 14). Studies of genetic diversity and the potential for rapid evolution of invasive species may provide useful insights into what causes species to become invasive (Sakai et al. 2001; Lee & Gelembiuk 2008). More information about the genetics and evolution of invasive species or native species in invaded communities, as well as their interactions, may lead to predictions of the relative susceptibility of ecosystems to invasion, identification of key alien species, and predictions of the subsequent effects of removal (e.g., Roe et al. 2019).

Moreover, genetic descriptions of populations can be used to reconstruct the invasion history and to identify the source populations of biological invasions (Signorile et al. 2016). This information can also be used to detect possible human-mediated translocations and to better manage invasions by identifying transportation pathways that can be targeted for more stringent control.

Similarly, genetic descriptions of population connectivity (e.g., gene flow) can be used to reconstruct pathways of host movement and pathogen spread. Knowing corridors or barriers to movement and spread can help managers monitor, predict, and prevent infectious disease transmission and outbreaks (Blanchong et al. 2008). Study of the genetics of pathogens can also provide valuable information about the genetic population structure and demography of host species (Biek et al. 2006).

1.2.3 Conservation genomics

Recent advances in molecular genetics, including sequencing of the entire genomes of many species, have revolutionized applications of genetics (e.g., medicine, forestry, and agriculture). We currently have complete genome sequences from thousands of species, as well as many individuals within species (Ellegren 2014). The Earth BioGenome Project intends to characterize the genomes of all of Earth's eukaryotic biodiversity over a 10-year period. This coming explosion of information has transformed our understanding of the amount, distribution, and functional significance of genetic variation in natural populations (Allendorf et al. 2010; Shafer et al. 2015).

Now is a crucial time to explore the potential applications of this information revolution for conservation genetics, as well as to recognize limitations in applying genomic tools to conservation issues. The ability to examine hundreds or thousands of genetic markers with relative ease has made it possible to answer many important questions in conservation that have been intractable until now (Figure 1.1).

1.2.3.1 Genetic engineering

Some have proposed that genetic engineering (or genetic modification) should be used to introduce adaptive variants to prevent extinction (e.g., Thomas et al. 2013), but this approach is not likely to be of general utility (Hedrick et al. 2013a). It might be applicable in a very few individual cases, for example, for some long-lived plants, where disease resistance is primarily due to single genes. In general, however, identification of "missing" adaptive single-gene variants in endangered species and increasing their frequency in populations without causing harmful side effects is infeasible in the wild except in a small number of special cases (e.g., where novel pathogens have been introduced; Kardos & Shafer 2018). However, such research is starting to play an important role in agriculture, identifying valuable variants in domesticated species that live in managed environments (Zhu et al. 2020).

Furthermore, when genetically based fitness reductions have been documented in endangered populations, they almost always have been traced not to a lack of adaptive diversity, but to increased frequency of detrimental alleles and increased homozygosity caused by genetic drift and inbreeding (Hedrick et al. 2013a). Those were the factors causing low fitness in Florida panthers and Swedish vipers. In these cases, fitness was increased by genetic rescue, the introduction of unrelated individuals from other populations. The introduction of specific adaptive alleles by genetic engineering in these cases, as proposed by Thomas et al. (2013), will not overcome the genome-wide effects of inbreeding depression.

Nevertheless, there are some situations in which genetic engineering should be considered as a conservation genetics technique (Strauss et al. 2015). Many native trees in the northern temperate zone have been devastated by introduced diseases for which little or no genetic resistance exists (e.g., European and North American elms, and the North American chestnut). Adams et al. (2002) suggested that transfer of resistance genes by genetic modification is perhaps the only available method for preventing the loss of important tree species when no native variation in resistance to introduced diseases exists. Transgenic trees have been developed for both American elm and American chestnut, and are now being tested for stable resistance to Dutch elm disease and chestnut blight (Popkin 2018). The use of genetic engineering to improve agricultural productivity has been controversial but is now widespread for some crops. There will no doubt continue to be a lively debate about the use of these procedures to prevent the extinction of natural populations.

The loss of foundation tree species is likely to affect many other species as well. For example, whitebark pine is currently one of the two most important food resources for grizzly bears in the Yellowstone National Park ecosystem (Mattson & Merrill 2002). However, most of the whitebark pine in this region is projected to be extirpated because of an exotic pathogen, and with predicted geographic shifts in the climatic niche-based habitat of this species in the next century (Warwell et al. 2007; McLane & Aitken 2012).

1.3 What should we conserve?

Conservation can be viewed as an attempt to protect the genetic diversity produced by evolution over the previous 3.5 billion years on our planet. This is an overwhelming task. Over 2 million species have been described and perhaps 100 million species have yet to be described (Soltis & Soltis 2019). Darwin (1859) was the first to represent this diversity in a diagram that he referred to as the "Tree of Life." The first comprehensive Tree of Life for all described species was published in 2015 (Figure 1.2; Hinchcliff et al. 2015). Genetic diversity is one of three forms of biodiversity recognized by the IUCN as deserving conservation, along with species and ecosystem diversity. Unfortunately, genetics has been generally ignored by the member countries in their National Biodiversity Strategy and Action Plans developed to implement the Convention on Biological Diversity (CBD) (Laikre et al. 2010a; Hoban et al. 2020).

We can consider the implications of the relationship between genetic diversity and conservation at many levels: genes, individuals, populations, varieties, subspecies, species, genera, and so on. Genetic diversity provides a retrospective view of the evolutionary history of taxa (phylogenetics), a snapshot of the current genetic structure within and among populations (population and ecological genetics), and a glimpse ahead to the future evolutionary

Figure 1.1 Schematic diagram of interacting factors in conservation of natural populations. Traditional conservation genetics, using neutral markers, provides direct estimates of some interacting factors (blue). Conservation genomics can address a wider range of factors (red). It also promises more precise estimates of neutral processes (blue) and understanding of the specific genetic basis of all of these factors. For example, traditional conservation genetics can estimate overall migration rates or inbreeding coefficients, whereas genomic tools can assess gene flow rates that are specific to adaptive loci or founder-specific inbreeding coefficients. From Allendorf et al. (2010).

Figure 1.2 Comprehensive Tree of Life showing phylogenetic relationships among over two million described species. The arrow indicates the position of humans in this tree. Redrawn from Soltis & Soltis (2019).

potential of populations and species (evolutionary biology). Genomic tools have provided new insights into all of these areas.

1.3.1 Phylogenetic diversity

While species have historically been prioritized for conservation efforts and resources based on their charismatic appeal and high profile, scientifically justified methods have been developed to identify those species that should be of highest importance from an evolutionary standpoint. The amount of genetic divergence based upon **phylogenetic** relationships is often considered when setting conservation priorities for different species (Mace et al. 2003; Rosauer & Mooers 2013). For example, the United States Fish and Wildlife Service (USFWS) assigns priority for listing under the Endangered Species Act (ESA) on the basis of "taxonomic distinctiveness" (USFWS 1983). Species of a **monotypic** genus receive the highest priority. The tuatara is an extreme example that raises several important issues about assigning conservation value and allocating our conservation efforts based upon taxonomic distinctiveness (Example 1.2).

Faith (2008) recommended integrating evolutionary processes into conservation decision-making by considering phylogenetic diversity. Faith provides